
Contextualizing Rename Decisions using
Refactorings and Commit Messages

Anthony Peruma∗, Mohamed Wiem Mkaouer∗, Michael J. Decker†, Christian D. Newman∗
∗Rochester Institute of Technology, Rochester, NY, USA

†Bowling Green State University, Bowling Green, OH, USA

axp6201@rit.edu, mwmvse@rit.edu, mdecke@bgsu.edu, cnewman@se.rit.edu

Abstract—Identifier names are the atoms of comprehension;
weak identifier names decrease productivity by increasing the
chance that developers make mistakes and increasing the time
taken to understand chunks of code. Therefore, it is vital to
support developers in naming, and renaming, identifiers. In
this paper, we study how terms in an identifier change during
the application of rename refactorings and contextualize these
changes using co-occurring refactorings and commit messages.
The goal of this work is to understand how different development
activities affect the type of changes applied to names during a
rename. Results of this study can help researchers understand
more about developers’ naming habits and support developers
in determining when to rename and what words to use.

Index Terms—Program Comprehension, Identifier Names, Re-
name Refactoring

I. INTRODUCTION

Program comprehension is an extremely important part of a

developer’s day-to-day activities. Before a developer can per-

form any activity related to maintaining an existing code base,

they must first read and understand the code corresponding to

this activity. In short, comprehension is critical to all software

maintenance and evolution activities.
Previous work has shown that developers spend a significant

amount of time comprehending code [1], [2]. Some have

estimated that developers spend ten times longer reading and

analyzing code as opposed to writing it [2]. In order to

help developers perform optimally when maintaining large

code bases, it is critical that we reduce the amount of time

they spend understanding code by making it easier for them

to quickly and effectively understand the code they will be

working on [3]–[6].
One important aspect of comprehension is the choice of

naming identifiers (e.g., class names, method names, etc.).

Identifier names are the atoms of comprehension; weak identi-

fier names decrease productivity [4]–[7], normalizing identifier

names helps both developers and research tools [8], [9], and

many research projects, both recent and otherwise, have an

explicit goal of improving identifier naming in source code

using algorithms that take advantage of large datasets of

identifier names and/or static analysis [10]–[15].
One way to improve identifiers is to apply a rename refac-

toring [16]. The rename refactoring is defined as modifying

the name of an identifier without modifying the intended

behavior of the code of which the identifier is part. Many

Integrated Developer Environments (IDE) offer a built-in

rename refactoring functionality. Unfortunately, even though

there is some support for the mechanical act of renaming

via IDEs, there is little support to help inform developers of

when to rename (i.e., when a name is of sub-optimal quality),

and how to rename them (i.e., what words to use within

the name). Instead, renames are typically performed when a

developer notices that an identifier does not accurately reflect

the behavior it represents. This causes renaming to be applied

in a manner which is not always wholly systematic. Further,

a developer is free to come up with whatever name they like

(i.e., within the limits of naming conventions defined for the

project). This new name may be even worse than the original.

Because naming heavily effects comprehension, it is im-

portant to fully support developers when they must modify

identifier names. That is, research must support developers

in applying rename refactorings. Current research on naming

focuses heavily on suggesting identifier names [10], [11],

[13], [14], studying how names correlate with behavior [12],

[17], and analyzing names [18]–[22]. However, there are few

studies that investigate how names evolve [18], [23]–[25] (i.e.,

are changed via rename) and how these changes correlate

with changes made to source code (i.e., whether behavior-

preserving or not) and as part of a larger development plan.

To help fill the gap in knowledge concerning renaming

identifiers, this paper studies rename refactorings in two ways.

1) This paper utilizes a taxonomy of rename types published

by Arnoudova et al. [18] to understand the types of changes

applied to identifier names within our dataset. That is, we

study how individual terms within an identifier are modified

both syntactically and semantically when a rename refactoring

is applied. 2) The paper contextualizes these rename types by

analyzing commit log data and changes made directly to the

source code. This allows us to understand how changes to

the code surrounding an identifier affects the identifier’s name

and, likewise, how development activities (i.e., written in a

commit log) affect the identifier’s name. This work extends

the research started by Peruma et al. [23]. We first enhance

the topic modeling analysis through the use of topic coherence

and n-grams. Next, we extend the contextualizing activity to

include code refactorings that surround renames.

The goal of this study is to forward our understanding of

the changes made to identifiers during renaming activities

by studying the two perspectives described in the previous

paragraph. In the long term, the outcomes of this study will

01

2019 19th International Working Conference on Source Code Analysis and Manipulation (SCAM)

2470-6892/19/$31.00 ©2019 IEEE
DOI 10.1109/SCAM.2019.00017

PREPRINT

be used to 1) recommend when a rename should be applied, 2)

recommend the types of words to use when applying a rename,

and 3) develop a model that describes how developers men-

tally synergize names using domain and project knowledge.

Additionally, we reflect on challenges for future research in

analyzing data similar to what was used in this paper.
Hence, we answer the following research questions:
RQ1: What is the distribution of experience among

developers that apply renames? We want to know how much

experience developers who apply renames typically have. This

will inform us of the types of developers in our rename data.
RQ2: What are the refactorings that occur more fre-

quently with identifier renames? With this question, we aim

to understand what types of refactorings tend to occur before

or after a rename. Our theory is that the changes made to code

immediately before or after a rename have a relationship with

the rename itself.
RQ3: To what extent can we use refactoring occurrence

and commit message analysis to understand why different
semantic changes were applied during a rename operation?
Using our refactoring co-occurrence data from RQ2, we add

in commit message data in an effort to see how effectively we

can pinpoint the development reason for certain changes (e.g.,

using more general words) to words in identifier names.

II. RELATED WORK

Since the choice of adequate naming for identifiers is critical

for code understandability, there have been many studies that

have analyzed the quality of identifiers and how identifier

quality affects comprehension and developer efficiency.
Arnoudova et al. [18] proposed an approach to analyze and

classify identifier renamings. They mined several rename op-

erations and then contrasted between the old and new namings

using the lexical database Wordnet [26]. The authors have

shown the impact of proper naming on minimizing software

development effort and conducted a survey showing that 68%

of developers think recommending identifier names would

be useful. The same researchers also defined a catalog of

linguistic anti-patterns that are found to deteriorate the quality

of code understanding [17]. They have shown the negative

impact of linguistic anti-patterns by conducting two studies

with software developers and finding that the majority of

programmers perceive anti-patterns as poor naming practices.
Liu et al. [24] proposed an approach that monitors the

rename activities performed by developers and then recom-

mends a batch of rename operations to all closely related

code elements whose names are similar to that of the renamed

element by the developer. They also studied the relationship

between argument and parameter names and use the patterns

they found to detect naming anomalies and suggest renames

to developers [25]. Peruma et al. [23] studied how terms

in an identifier change and contextualized these changes by

analyzing commit messages using a topic modeler; looking

for words that indicate what development activity had occurred

with the change. We extend this work by examining refactoring

co-occurrence with renames and analyzing commit messages

of these co-occuring refactorings.

Høst and Østvold [12] designed automated naming rules

using method signature elements, i.e., return type, parameters

names and types, and control flow. They call this technique

method phrase refinement, which takes a sequence of part of

speech tags (i.e., phrases) and concretizes them by substituting

real words. (e.g., the phrase <verb>-<adjective> might refine

to is-empty). Additionally, they use static analysis to group

method names (in phrase form) together by behavior. Binkley

et al. [21] presented empirically-derived rules that certain types

of identifiers (e.g., class field identifiers) should follow. One of

these rules is that class fields should never be just an adjective.
There are several recent approaches to appraising identifier

names for variables, methods, and classes. Kashiwabara et

al. [14] use association rule mining to identify verbs that

might be good candidates for use in method names; this

work focuses on word co-occurrence to find any emergent

relationships. [13] uses an ontology that models the word

relationships within a piece of software. They then generate

suggestions for new identifier names using different schemes

for how to choose sequences of words to put together to

form the identifier. Allamanis et al. [10] use a novel language

model called the Subtoken Context Model, which is a neural

network that has some similarity to n-grams (in that it uses

a previously seen set of tokens to predict a new token). The

difference is that the neural network is able to take into account

long-distance features (e.g., identifier names that occur very

far away from the target location) and produce neologisms

(essentially, new identifiers) by concatenating words together

(i.e., as is commonly done by developers).
Liblit et al. [27] discusses naming in several programming

languages and makes observations about how natural language

influences the use of words in these languages. Schankin et

al. [4] focus on investigating the impact of more informative

identifiers on code comprehension. Their findings show an

advantage of descriptive identifiers over non-descriptive ones.

Hofmeister et al [5] compared comprehension of identifiers

containing words against identifiers containing letters and/or

abbreviations. Their results show that when identifiers con-

tained only words instead of abbreviations or letters, developer

comprehension speed increased by 19% on average. Lawrie

et al [6] did a study on 100+ programmers; asking them to

describe twelve different functions. These functions used three

different ”levels” of identifiers: single letters, abbreviations,

and full words. The results show that full word identifiers lead

to the best comprehension, though there were cases where

there was no statistical difference between full words and

abbreviations. Butler’s work [7] extends their previous work

on java class identifiers [28] to show that flawed method iden-

tifiers are also (i.e., along with class identifiers) associated with

low-quality code according to static analysis-based metrics.

III. ANALYSIS OF RENAMES

The hypothesis of this paper is as follows: Changes to the

name of an identifier are most likely related to other changes

made locally (i.e., in the same class, function, or file) and

the intuition behind those changes. Under this hypothesis, we

02

PREPRINT

should be able to correlate the types of changes made to a

name with other local changes. In this section we will take a

look at a couple examples of this occurrence found in our data

set. We use a taxonomy originally created by Arnaoudova et

al [18] and used in a study similar to this one by Peruma et al

[23] to examine rename refactorings and categorize them into

the different types prescribed by this taxonomy. In this section,

we will briefly discuss the taxonomy, but encourage the reader

to read the original work for a more thorough discussion of

each category. The taxonomy is made up of five high-level

categories which are presented below.

A. Taxonomy for Rename Refactorings

Entity Kind: This category is concerned with what source

code entity a given identifier represents. For example, the

identifier may be the name of a type, class, getter, setter, etc.
Form of Renaming: This category reflects the lexical

change made to the identifier. It is broken down into a few

subcategories: simple, complex, reordering, and formatting.

Simple changes are those that only add, remove, or change

one term in the identifier. Complex changes add, remove

or change multiple terms. Reordering is where two or more

terms in an identifier switch positions (i.e., GetSetter becomes

SetterGet), and formatting changes are those where there is

no renaming but a letter in a term changes case or a separator

(e.g., underscore) is added or removed.
Semantic Changes: These are changes due to

adding/removing terms or modifying terms (e.g., to another

term that is a synonym of the original) such that the meaning

of the identifier may have been modified. The following

heuristics are used to figure out whether the idenifier’s

semantics have been preserved or modified.
We consider the identifier’s meaning preserved if one of

the following holds: 1) The change added/removed a separator,

2) the change expanded an abbreviation, 3) the change col-

lapsed a term into an abbreviation, 4) the old term was changed

to a new term which is a synonym of the old term, 5) multiple

old terms were changed to multiple new terms which are

synonyms OR use or removal of negation preserves meaning

of the identifier (i.e., ItemNotVisible becomes ItemHidden).
We consider the identifier’s meaning modified if one of the

following holds: 1) Broaden meaning– the old term is renamed

to a hypernym of itself OR a term (i.e., adjective or noun) was

removed which generalizes the identifier (e.g., GetFirstUnit

becomes GetUnit). 2) Narrowing meaning– the old term is

renamed to a hyponym of itself OR a term was removed

which narrows the meaning of the identifier (e.g., GetUnit

becomes GetFirstUnit). 3) We consider meaning changed (i.e.,

not narrowed or broadened) when an old term is changed to a

new term which is unrelated to the old; when a new term is the

old term’s meronym/holonym, or antonym; OR when multiple

terms are changed AND a negation reverses a synonym of

the old term. 4) Add meaning– one or more new terms were

added to the identifier AND the addition does not fall into

one of the categories above (e.g., narrow meaning). 5) Remove
meaning– one or more terms removed from the identifier AND

the removal does not fall into one of the categories above (e.g.,

broaden meaning).

B. Contextualizing Rename Refactorings

Developers rename identifiers for multiple reasons. Through

careful analysis of rename refactorings, one can gain insight

into how developers choose their words, why they choose

certain types of words over others, and how to mimic this

process automatically. In this subsection, we show examples

of how developer activity, recorded in commit messages and

refactoring operations, is reflected in their renaming choices.
By analyzing the following method rename: setDisableBin-

LogCache → setEnableReplicationCache, we observe that the

meaning of the name has changed; the developer has modified

the name by changing disable to enable. This change is

reflected in the commit message entered by the developer:

“Changes replication caching to be disabled by default”
Similarly, the renaming of a class from Key → EntityKey
demonstrates an act of narrowing the meaning of the iden-

tifier. Once again, the purpose of this rename is reflected in

the commit message: “Rename Key to EntityKey to prepare
specialized caches”.

Developers may also rename identifiers to 1) better represent

the existing functionality and not when they are changing or

narrowing it, or 2) adhere to naming standards or correcting a

spelling/grammatical mistake. For example, here the developer

renamed the class TestProxyController → ProxyControllerTest
by reordering the term names to “...fixed names that were not
in standards”. In the next example, the developer preserves

the meaning of a method by renaming it from inactivate →
deactivate, through the use of a synonym. This is, again,

reflected in the commit message: “Renaming method to proper
English...”, where renaming to ‘proper English’ indicates that

the meaning has not been modified but should now be easier

to comprehend.
Finally, commit messages are not the only way to contextu-

alize rename refactorings. Changes to the code surrounding

a name also help in understanding what the developer’s

intention. Unfortunately, most types of changes to the code

are not part of a pre-defined taxonomy. That is, it is difficult

to understand the abstract, domain-level goal of individual

changes. Luckily, some types of code changes are taxono-

mized. Specifically, refactorings are a taxonomy of changes

made to the code for a specific goal; typically to optimize

non-functional attributes of the code [16]. We can look at

refactorings that happen just before and right after a given

rename to help us understand what the developer was doing

before and after they applied a rename refactoring.
For example, in commit [29] the developers applied an

Extract Method refactoring with the following comment: “us-

ing the Jangaroo parsing infrastructure; all tests green; getters

inherited”, before applying rename: getCompilationsUnit →
getCompilationUnit. This preserves the meaning of the name

but puts the name more in-line with its type, as stated by the

commit message for this change: “Corrected type in internal

method name” [30].

03

PREPRINT

Engineered open-
source projects

800 random
Java projects

Clone projects &
extract commit data

Code
refactoring

mining

Rename
semantic
detection

Rename
co-occurrence

detection

RRename
co-occurrence

detection

Rename
developer
experience

RenameRename
developer
experience

Fig. 1: Methodology overview

Another example comes from a move class refactoring,

where a class was moved from one package to another [31].

This refactoring commit had the following comment: “In-

cremental changes, some package refactorings etc”. Further,

a rename was performed after this commit: JsonViewRe-
sult→JsonView [32]. This rename broadens the meaning of the

name by removing result, making the identifier more general

in meaning. The commit message associated with the rename

is: “Cleaned up some file names for easier usage...”, meaning

the developer was likely going through and renaming things

after the move class refactoring. The question we ask, in the

context of these examples, is whether there are overarching

themes to the way names change given that a refactoring has

occurred in a commit surrounding it. If so, then it is possible

to study these trends and use them to support developers in

their naming activities.

IV. METHODOLOGY

Our experiment methodology consisted of two phases - Data

Collection and Detection. The Data Collection phase consisted

of building our dataset while the Detection phase consisted

of analyzing and querying the dataset for specific features to

help answer our research questions. Depicted in Figure 1 is

an overview of the approach that we undertook to conduct

our experiments. In the subsequent subsections, we explain in

detail the approach for each activity.

A. Data Collection Phase

Projects: To obtain a viable dataset to perform our experiments

on we selected 800 random, curated open source Java projects

hosted on GitHub. These curated projects were selected from

a dataset made available by [33]. The authors of this dataset

classified engineered software projects based on the projects

use of software engineering practices such as documentation,

testing, and project management. In terms of recentness, the

TABLE I: Distribution of the top five refactorings

Refactoring Type Count Percentage

Rename Attribute 137,842 19.37%
Rename Variable 84,010 11.81%
Rename Method 82,206 11.55%
Move Class 76,265 10.72%
Extract Method 47,477 6.67%
Others 283,695 39.87%

projects were cloned in early 2019, and approximately 74.6%

of the projects had their most recent commit within the last

four years. In total, we collected 748,001 commits with a

project containing 732 commits and 19 developers on average.

Refactorings: Our study utilizes RefactoringMiner [34] to

mine refactorings occurring in the source code. At the time

of conducting our study, Refactoring Miner can identify 28

different refactoring operations. From this list of operations,

seven are rename based operations. RefactoringMiner iterates

over all commits of a repository in chronological order and

compares the changes made to Java source code files by

developers and detects refactorings in the code based on a pre-

defined set of refactoring rules. We investigated the renaming

operations on five types of identifiers - Classes, Attributes (i.e.,

class level variables), Methods (including getter and setters),

Method Parameters, and Method Variables. Furthermore, our

experiments were conducted on the entire commit history of

the project (and not on a release-by-release comparison). In

total, we detected 711,495 refactoring operations with each

project in our dataset exhibiting refactoring operations. After

the removal of outliers (via the Tukey’s fences approach),

on average, each project had 450.8 refactoring operations

performed by seven developers. Approximately 53.51% of the

refactoring operations in our dataset were rename based. Due

to space constraints, we present only the top five refactoring

operations, that was mined from our dataset, in Table I. The

entire list is available on our website [35].

B. Detection Phase

Rename Forms & Semantics: To detect the form and seman-

tic update an identifier undergoes we obtained the program

utilized in [23] and made some minor updates to the semantic

categorization logic. The program primarily relies on Python’s

Natural Language Toolkit (NLTK) [36] to compare the original

and renamed identifier name to determine the type of semantic

change made by the developer. Table II shows the distribution

of rename form and semantic meaning types in our dataset.

Rename Co-occurrence: We built a custom program to detect

refactorings that occur before and after rename refactoring

by iterating over the mined refactoring-based commits in our

dataset. Since our rename refactorings are related to classes,

attributes, methods, method parameters, and method variables,

we restricted our occurrence detection to refactorings that are

applied to only these types of elements. For each renamed

element type, we first extract all unique instances. Next, we

iterated through all refactorings searching for refactorings that

involved the specific instance.

04

PREPRINT

TABLE II: Distribution of rename forms and semantic meanings

Type Count Percentage

Rename form types

Simple 259,754 68.31%
Complex 109,860 28.89%
Formatting 8,916 2.34%
Reordering 1,732 0.46%

Rename semantic meaning updates

Preserve 29,568 7.78%
Change 350,694 92.22%

Change – Narrow 44.21%
Change – Add 37.93%
Change – Broaden 15.09%
Change – Remove 2.58%
Change – Antonym 0.19%

To better highlight this process, consider

the example where we detected the class

stormpot.CountingAllocatorWrapper as being renamed

to stormpot.CountingAllocator [37]. We then queried

our list of unique attributes, methods, parameters, and

variables for elements that were part of this class and had

also undergone a refactoring. Our search resulted in an

attribute, counter, belonging to this class and had undergone

a rename refactoring (prior to the class being renamed) [38].

Finally, we record this pair of refactorings in our database.

Commit Log Contextualizing: As part of our experiment, we

aimed to contextualize certain instances of the commit log in

order to derive the developer’s rationale for performing specific

tasks. To achieve this, we performed a topic modeling and

n-gram analysis of commit messages. We utilized the latent

Dirichlet allocation (LDA) [39] algorithm for our topic mod-

eling analysis. We used a combination of topic coherence [40]

and manual empirical analysis to determine the ideal number

of topics, as past research has shown that the number of topics

can vary between studies and datasets [41]. A prerequisite to

these activities was a text preprocessing task where we cleaned

and standardized the commit messages. Some key steps in our

preprocessing included: removal of stopwords, URLs, numeric

and alphanumeric characters/words, and non-dictionary words.

Additionally, we also expanded contractions and performed

stemming and lemmatizing on words.

Developer Experience: Since obtaining the experience of a

developer can be subjective and also not entirely feasible

for a large scale study such as this, we conducted a more

objective-based experiment. To this extent, we followed the

approach utilized by [42]. In their approach, the authors use

project contribution as a proxy for developer experience within

a project. Hence, for each developer in each project, we

calculate the Developers Commit Ratio (DCR). In this ratio,

we measure the number of individual commits made by the

developer against all project commits. In other words, DCR

= (IndividualContributorCommits
TotalAppCommits). To mitigate the threat of

mis-attributing commits due to the use of git features such

as pull requests, we only consider the author of a commit as

0.0

0.1

0.2

0.3

0.4

1e−05 1e−03 1e−01

Developer Commit Ratio (Log Scale)

D
en

si
ty

All Refactorings Only Non−Renames Only Renames

Fig. 2: Distribution of DCR values for developers based on the type
of refactoring performed in their project

its developer.

V. EXPERIMENTAL RESULTS

We will now discuss our results. The discussion is broken

down into our three Research Questions. In RQ1, we discuss

the experience of developers that perform rename refactor-

ings versus other types of refactorings. In RQ2, we look at

what kinds of refactorings happen before or after a rename

refactoring and discuss both how often rename refactorings are

preceded or followed by another refactoring and what types

of refactorings these preceding or following changes represent.

In RQ3, we combine and discuss data from RQ2 with commit

message information and the semantic change types discussed

in Section III-A with a goal of using the commit message and

refactoring information to contextualize the semantic change

types we detected in our set of renames.

A. RQ1: What is the distribution of experience among devel-
opers that apply renames?

To compare the distributions of DCR for developers who

had performed only renames, only non-renames and a mix of

rename and non-rename refactorings, we followed the same

approach as [42]. Since the number of developers in each

project differs, we calculated an adjusted DCR value for each

developer by dividing the developers original DCR value by

the number of developers in the project. We also restricted our

experiment to projects that had only two or more developers.
As shown in Figure 2, it is not surprising that developers

who perform all types of refactorings have a higher DCR

than those that perform only rename refactorings. However,

it is interesting to observe that developers who perform only

renames share a similar DCR value as those that perform only

non-rename refactorings. To further validate these findings, we

performed a nonparametric Mann-Whitney-Wilcoxon test on

the DCR values for developers that belonged to these cate-

gories. We obtained a statistically significant p-value (< 0.05)

05

PREPRINT

TABLE III: Distribution of rename form and semantic meaning up-
dates performed by developers based on their refactoring preferences

Type Only Renames All Refactorings

Percentage Percentage

Rename form types

Simple 64.65% 67.01%
Complex 30.55% 29.96%
Formatting 4.56% 2.52%
Reordering 0.24% 0.51%

Rename semantic meaning updates
Preserve 9.97% 8.50%
Change 90.03% 91.50%
Change – Narrow 48.99% 48.08%
Change – Add 29.93% 32.68%
Change – Broaden 18.33% 16.46%
Change – Remove 2.58% 2.56%
Change – Antonym 0.17% 0.21%

when the DCR values of developers who performed only

rename refactorings were compared to developers that perform

all types of refactorings. This value confirms that developers

that contribute less to a project are more likely to perform

rename refactorings, which are generally considered easier

to apply due to wide IDE support despite developers also

generally agreeing the renaming is a difficult problem [18].
Looking at the different types of identifier rename forms,

we observed that there was no significant difference in the dis-

tribution of renaming forms between developers that perform

only renames and those that perform all types of refactor-

ings. Similarly, the types of semantic updates to an identifier

name also showed no significant differences among these two

groups of developers. Table III provides a breakdown on the

distribution of rename form and semantic meaning updates.
Our experiment on developer experience shows the devel-

opers with more project experience (i.e., contributions) are

more accustomed to performing a multitude of different types

of refactoring operations. This should not be surprising as

these developers have more experience and knowledge of the

codebase (and system) and would be more comfortable in

implementing design/structural changes to the project. Given

that renames have wide IDE support and are syntactically

simple modifications, inexperienced developers will naturally

be drawn into making such refactorings in the project.
Summary for RQ1: Developers with limited project expe-

rience are more inclined to perform only rename refactorings

than other types of refactorings (which may alter the design of

the system). However, there is no difference between these two

types of user groups with regards to the complexity (i.e., form

and semantic) of the rename. Because developers who apply

renames may have limited project experience, we must keep

this factor in mind when analyzing changes made to names.

B. RQ2: What are the refactorings that occur more frequently
with identifier renames?

To derive the extent to which non-rename refactorings can

either influence or be influenced by a rename, we studied

the type of refactoring commits that occur just before and
after a rename refactoring commit. This part of our study

TABLE IV: Top 3 refactoring operations that occur before a class,
attribute, method and method variable are renamed

Refactoring
Operation Count Percentage Commit Message

Key Terms

Refactoring operations before a class rename

Move Class 3,069 26.96% package, structure, change
Rename Method 2,062 18.12% code, clean, change, fix
Rename Variable 1,376 12.09% add, code, test, support
Others 4,875 42.83% N/A

Refactoring operations before an attribute rename

Move Attribute 1,499 83.32% added, fix, support, test
Pull Up Attribute 220 12.23% added, simplification, extract
Push Down Attribute 73 4.06% separate, remove, added
Others 7 0.39% N/A

Refactoring operations before a method rename

Rename Method 1,760 19.58% revert, implementation, test
Extract Method 1,666 18.53% fix, added, modified, test
Rename Variable 1,364 15.17% added, test, fix, change
Others 4,201 46.72% N/A

Refactoring operations before a method variable rename

Rename Variable 3,067 90.66% revert, added, test, fix
Extract Variable 305 9.02% added, string, test, fix
Inline Variable 6 0.18% fix, working, change
Others 5 0.15% N/A

focused on the renames of classes, attributes, methods, method

parameters, and method variables. For each entity type, we

extracted the list of unique instances that underwent a rename

and then searched for the refactoring that directly preceded and

directly followed (i.e., there may be non-refactoring commits

that we skip) the rename for either the same entity or child

entities (as in the case of classes and methods).

Interestingly, we observed that for all elements that are

subject to renames, developers frequently perform the rename

in isolation. In other words, approximately 90% of the rename

refactorings did not have a refactoring occurring immediately

before and after the rename. However, this does not mean that

the developer only performed a rename to the element during

the lifetime of the element. There can be other non-refactoring

activities that were applied to the element by the developer that

is not considered a refactoring (e.g., adding lines of code to

a method). For scenarios where there are refactorings either

before or after a rename, we noticed that more operations

occur before a rename (≈ 8%) than after (≈ 2%).

In general, the majority of the refactorings that occur

before a rename are related to changes/updates to functionality.

Additionally, we also observed that some of these commits are

also bug fix related and also due to developers either adding

or updating unit test files. For example, in order to include

new functionality, a developer refactors the existing code by

creating a new method called getClassURL by performing

an Extract Method operation [43]. Thereafter the developer

renames the newly created method to getClassUrl to ensure

that name follows “Google’s style rules” [44].

Even though the number of refactorings occurring af-

ter a rename is much smaller, we did notice that most

06

PREPRINT

of these refactorings are associated with some form of

code reversal/reverting. As an example, a developer ini-

tially renames a method from getIncludedPublishers

to getEnabledSources when introducing new functionality

[45]. However, in a subsequent commit [46], the developer

removes this functionality from the method and also reverts

back to the original method name.
As the majority or refactoring operations occur before a

rename, in the following subsections, we drill-down into each

element type with the aim of discovering the common types

of refactorings that precede the renaming of the element and

also the extent to which the commit log can contextualize the

relationship between these refactorings. Table IV highlights

the distribution of the top three refactoring operations that

occur before a class, attribute, method, and method variable

is renamed. Also provided in this table are the common terms

we extracted from our topic-modeling and n-gram analysis of

the commit messages that are associated with these refactoring

operations. The complete list of refactorings that proceed and

follow a rename refactoring is available on our project website.

C. Class Rename
Our study of class renames involved identifying the

refactorings performed on the class and all elements within

the class (i.e., attribute, methods, method parameters,

and method variables) immediately before and after the

developer renames the class. We observed that developers

more frequently performed a Move Class refactoring before

renaming the class. Results from our topic modeling and

n-gram analysis coupled with a manual analysis of random

messages showed that activities related to restructuring

project structures and change of package names cause

developers to rename class names. For example, in [47]

a developer moves the class BasicAuthLoginCommand

from com.heroku.api.command to

com.heroku.api.command.login with the message

“reorganized commands into appropriate packages.” The next

refactoring operation [48] performed on this class is renaming

the class to BasicAuthLogin. The reason for the rename is

“...to simplify some of the names.”
Looking at the number of non-refactoring commits that

separate a Move Class from a Rename Class we observed

that the majority of renames (≈ 7.15%) occur in the commit

immediately following the move. It is also interesting to note

that a gap of between 1 to 5 commits occurs around 27.73%

of the time between a class move and rename.

D. Attribute Rename
Similar to classes, developers perform move operations

on attributes before renaming them. Looking at the commit

messages, change in functionality (specifically adding of new

features) is one of the most common reasons developers move

an attribute. As an example, in commit [49], the developer

moves the attribute jobId with the message “added the jobId

to a few more logs”. The subsequent refactoring commit [50]

for this attribute involves a renaming operation in which the

attribute is renamed to context as part of a “cleanup” activity.

We observed that around 71% of the renames occur in the

commit immediately after the developer moves the attribute.

Additionally, around 82% of rename refactorings take place

within five commits after the Move Attribute operation.

E. Method Rename

For methods, we investigated the refactorings that are ap-

plied to the method and its members (i.e., parameters and

variables) just prior to and after the method is renamed.

Interestingly, we observed that developers perform a rename

to the method before renaming it again more than any other

type of refactoring. Based on the terms in the commit log,

we observed that the reason for the initial rename is due to

developers changing the behavior/purpose of the method. Fur-

thermore, we noticed that the second occurrence of the method

rename reverts the first rename operation. For example, in

[51], the developer renames the method showDelivery to

showOwnDelivery as part of a functionality change, with

the commit message “Minor changes to access controls in in-

structor MVC”. In the subsequent commit [52], the developer

reverts the name change as part of cleanup activities with the

message “Final tidy of older instructor MVC”.

Looking at the interval between commits, the majority (≈
15.22%) of the method-rename pairs of refactorings occur one

after another. Further, a gap of between 1 to 5 commits occurs

around 37.68% of the time between two method renames.

F. Method Variable Rename

Like methods, method variables also undergo rename op-

erations in succession. Once again, looking at the commit

messages, we can gauge that the reason for the initial rename

was due to either refactoring or change (including reversals) in

functionality. It is also interesting to note that the developers

revert the variable name of the initial commit in the next re-

name. For example, in [53] the developer renames the variable

drop to assembledDrop with the message “simplified drop

assembly a bit”. The next commit reverts the variable name

when the developer performs a “misc code cleanup” activity.

Summary for RQ2: We have shown that in most sce-

narios, renaming of an element does not generally seem to

be influenced by, nor does itself influence another type of

refactoring on the same element. This indicates that an analysis

of non-refactoring operations will be required to understand

how changes to code around a rename affect or are affected

by the rename. However, there is a subset of renames that

occur directly before or after another refactoring. Of this

subset, we observed that a majority of the time developers

perform a refactoring operation just before the rename, these

two operations happen in a short (commit) interval. Finally,

in situations where a rename follows another rename, it has

been observed that developers revert to the original name when

performing the second rename.

07

PREPRINT

TABLE V: An overview of the types of semantic updates an identifier
name undergoes after a refactoring

Element
Type

Refactoring
Before Rename

Type of
Semantic Update

Top 3 Semantic
Change Subtypes

Class
Move Class

Change
(#: 2,659; %: 84.14%)
Preserve
(#: 501; %: 15.85%)

Narrow (63.56%)
Broaden (28.13%)
Add (3.65%)

Rename Method

Change
(#: 1,961; %: 90.0%)
Preserve
(#: 218; %: 10.0%)

Narrow (57.42%)
Broaden (31.56%)
Add (6.78%)

Rename Variable
Change
(#: 1,479; %: 100.0%)

Narrow (100%)

Attribute
Move Attribute

Change
(#: 1,419;%: 94.66%)
Preserve
(#: 80;%: 5.34%)

Add (54.05%)
Narrow (24.59%)
Broaden (16.07%)

Pull Up Attribute

Change
(#: 187;%: 85.0%)
Preserve
(#: 33;%: 15.0%)

Narrow (66.84%)
Broaden (25.67%)
Add (3.21%)

Push Down Attribute

Change
(#: 47;%: 63.51%)
Preserve
(#: 27;%: 36.49%)

Narrow (70.21%)
Broaden (23.4%)
Add (2.13%)

Method
Rename Method

Change
(#: 1,752;%: 81.19%)
Preserve
(#: 406;%: 18.81%)

Narrow (36.42%)
Broaden (31.16%)
Add (24.14%)

Extract Method

Change
(#: 1,447;%: 85.42%)
Preserve
(#: 247;%: 14.58%)

Narrow (64.06%)
Broaden (26.12%)
Add (4.49%)

Rename Variable

Change
(#: 840;%: 87.41%)
Preserve
(#: 121;%: 12.59%)

Narrow (49.28%)
Broaden (32.86%)
Remove (9.17%)

Variable
Rename Variable

Change
(#: 3,033;%: 98.89%)
Preserve
(#: 34;%: 1.11%)

Add(77.35%)
Narrow (14.93%)
Broaden (6.17%)

Extract Variable

Change
(#: 281;%: 92.13%)
Preserve
(#: 24;%: 7.87%)

Narrow (71.17%)
Broaden (19.57%)
Add(6.05%)

Inline Variable
Change
(#: 6; %: 100.0%)

Add (66.67%)
Narrow(33.33%)

G. RQ3: To what extent can we use refactoring occurrence
and commit message analysis to understand why different
semantic changes were applied during a rename operation?

To answer this question we looked at the types of semantic

changes applied to identifier names given that another refac-

toring was applied in the previous commit. We then analyzed

this data to understand whether the refactoring that happened

before the rename had any affect on the semantic change ap-

plied during the rename. Additionally, we performed commit

message analysis using LDA and bi/trigrams in an effort to

further contextualize the semantic change; using information

about why a given refactoring was applied before the rename

to help us understand the semantic changes observed during

renames applied afterward.
The first observation we make is that renames applied after

another refactoring most frequently changed the target name’s

meaning somehow; the meaning was less frequently preserved.

Therefore, we will first look at renames that changed the

meaning of the identifier they were applied to. Please refer

to III-A for a refresher on the semantic change categories.

Table V highlights the distribution of these change types

for elements that undergo a rename after another type of

refactoring operation.

We observed that the majority of the name changes were

related to a narrowing in the meaning of the name. Generally,

a narrowing in the meaning of an identifier name is related to

a specialization of functionality. For example, in commit [54],

a developer created the method readImage(width int,

height int) by performing an Extract Method operation

in order to add “missing functionality”. In a subsequent

refactoring operation on this method, the developer renames

the method to readZlibImage(width int, height int)

with the message “Added read support for GM8 gmk files”

[55]. As can be seen by the message, the developer specializes

the method and hence reflects this behavior in the new method

name by narrowing its meaning.

The next most common type of semantic change was

broadening of the identifier’s name. Developers perform a

broadening of the name when they generalize the behavior

of the identifier. As an example, in commit [56], a developer

performs a Pull Up Attribute on idColumn as part of gen-

eralizing change – “Create generic table class” . Thereafter,

the developer renames the attribute to id in order to make it

consistent with the earlier generalizing task – “Rename generic

table column fields” [57]. Finally, adding to the identifier name

was the third most frequent type of semantic change.

There are a few interesting things to point out from Table

V. The first is that a Rename Variable followed by another

Rename Variable tended to add meaning instead of narrow or

broaden. The same applies for renames occurring after a Move

Attribute refactoring and after a Inline Variable refactoring.

However, these are the only examples of a break from the typi-

cal pattern of Narrow being the most common semantic change

type. If we only contextualize using refactorings applied before

renames, there are few significant differences in the types of

semantic changes applied after different types of refactorings.

While this data does indicate the popularity of narrowing,

adding to, or broadening the meaning of a name , it does

not completely help us understand what the developers were

trying to accomplish; an Extract Method refactoring occurring

before a rename does not serve as a strong indicator of what

semantic change will happen if a rename is applied afterward.

To help us further contextualize these refactorings and

the renames occurring afterward, we used LDA and n-gram

analysis on commit messages associated with the rename

refactorings occurring after a refactoring operation. A previous

work has also used LDA on a similar context [23], but it

performed LDA analysis on the commit message associated

with the rename without taking into account if the rename

occurred in isolation or immediately after another refactoring.

Technically, we extended [23] topic modeling approach by

incorporating additional text preprocessing and the use of topic

08

PREPRINT

TABLE VI: Broadening of a method name after a variable rename

Analysis Output

LDA Topic 1

change (0.090), model (0.086), past (0.068),
discussed (0.068), allow (0.019), lambda(0.019),
route(0.019), work(0.015), early(0.014),
simplified(0.014)

LDA Topic 2

change (0.088), model (0.061), past (0.049),
discussed (0.049), fix (0.028), factory (0.026),
changed (0.023), loader (0.023), add (0.017),
set (0.013)

Trigram

(discussed, past, model), (change, discussed, past),
(model, change, discussed), (past, model, change),
(discussed, past, added), (changed, loader, factory),
(loader, factory, changed), (factory, changed, loader),
(location, model, change), (render, nicely, html)

TABLE VII: Narrowing of a variable name after its extraction

Analysis Output

LDA Topic 1

code (0.091), binding (0.083), data (0.081),
updated (0.074), fix (0.028), add (0.025),
support (0.017), cr (0.009), custom (0.009),
request (0.009)

LDA Topic 2

code (0.067), updated (0.060), binding (0.059),
data (0.058), record (0.013), id (0.010),
custom (0.010), introduced (0.010), remove (0.010),
cr (0.007)

Bigram
(data, binding), (binding, code), (updated, data),
(code, updated), (revamped, hibernate),(added, method),
(array, fix), (attribute, handle), (binding, warning)

coherence scores in order to improve the quality of our text

analysis compared to the original paper. The results of this

analysis are in Tables VI, VII VIII, and IX. In each table, we

show the two strongest topics from LDA along with either a

bigram or trigram analysis. We present either the bigram or

trigram that is the most relevant. Using the data in these tables,

we can see some indication of what development activity

caused different types of semantic changes when applying a

rename.

Table VI shows data for all method renames that are

preceded by a variable rename, and resulted in the name of

the method broadening in meaning. These preceded a rename

which resulted in a broaden meaning. The data here indicates

changes to a model and changes to a factory. We analyzed

the commit messages associated with these topics and found

the updates are due to bug fixes or code optimizations. For

example in commit [58], the broadening of the name is

associated with the message “...Made the factory generic”,

TABLE VIII: Narrowing of an attribute name after its pulled-up

Analysis Output

LDA Topic 1

work (0.094), introduce (0.043), security (0.034),
option (0.034), addition (0.034), start (0.018),
add (0.018), took (0.018), thread (0.018),
ongoing (0.018)

LDA Topic 2

symbol (0.077), table (0.077), work (0.061),
unit (0.031), option (0.031), property (0.024),
fixed (0.022), hierarchy (0.016), added (0.016),
implementation (0.016)

Trigram

(hierarchy, option, reduce),
(implemented, hierarchy, option),
(option, reduce, code), (reduce, code, duplication),
(code, duplication, implemented),
(duplication, implemented, hierarchy),
(gross, value, gross), (addition, security, addition),
(code, added, support), (entity, id, field)

TABLE IX: Adding meaning to a class name after moving it

Analysis Output

LDA Topic 1

method (0.189), added (0.083), adding (0.072),
increased (0.071), incremental (0.071), stub (0.071),
anonymous (0.071), truly (0.071), fix (0.013),
subset (0.013)

LDA Topic 2

test (0.198), validation (0.043), removing (0.030),
enable (0.029), mapping (0.029), upgrade (0.029),
failing (0.029), concept (0.029), collection (0.015),
contains (0.015)

Trigram

(added, method, adding), (adding, truly, anonymous),
(incremental, stub, method), (method, added, method),
(method, adding, truly), (stub, method, added),
(truly, anonymous, increased),
(anonymous, increased, incremental),
(cleaned, scorer, removing), (field, tree, context)

which a broaden meaning rename would logically follow.

Table VII has similar data but for a set of Extract Variable
refactorings which preceded a narrowing of the identifier name

meaning via rename. The topics and bigrams here indicate

code related to data binding, code updates and code fixes.

Again, we took a look at the commit messages associated

with this data and found that most of the data bindings were

specific to a certain project in our corpus. In this instance

[59], the developer uses a generic message, “Updated data

binding code...”. Ignoring this set of commits, a majority of

the remaining messages were associated with bug fixes.

Table VIII shows the implementation of options and re-

duction in code duplication which preceded a narrowing in

meaning. An analysis of the commit messages associated with

this table shows that the removal of duplicate [60] and legacy

[61] code is a task associated with code cleanup activities.

These activities can also range from simple identifier renames

[62] to more intensive structural changes [63]. Finally, Table

IX indicates the addition of new methods associated with

moving a class to a different location, which preceded an add
meaning change. Examining these commit messages revealed

that methods are added in response to enhancing the existing

design of the system after the class is moved and hence

contribute to the renaming of the class, such as in the case

of [64], where the developer performs a “...Method grouping”

in the newly moved class.

Preserve meaning was the least occurring semantic type,

and not surprisingly, the frequently occurring terms in these

commit messages were not change related. These terms in-

cluded ‘fix’, ‘test’ and ‘work’. Generally, such terms are

associated with behavior correction. Hence, developers feel

that the update they make to the code does not necessarily

deviate from the original expected behavior of the identifier.

For example, in [65] as part of updates to the user interface,

the developer performs a Pull Up Method operation on the

method calcTotal. The next update [66] to this method is

to address an issue, and as part of this task, the developer

renames the method to calculateTotal to better represent

its intended behavior. A cursory glance at the method shows no

changes to the functional behavior exhibited by this method.

Summary for RQ3: Developers frequently change the se-

mantic meaning of an identifier name when performing a

09

PREPRINT

rename after a refactoring. A narrowing (i.e., specialization)

of the name is the most common type of change in mean-

ing. While the rationale for some semantic changes can be

derived from the commit log in addition to the actions that

occurred just prior to the rename, classical ways of analyzing

large numbers of commit messages provide only a high-level

understanding of this rationale and require significant manual

analysis to help us fully understand the rationale. The answer

to this RQ is that refactorings, occurring before and after a

rename, and commit messages can give us some high-level

insight into how names semantically change and why, but

further research using additional artifacts, and new methods

of natural language text analysis for software engineering, are

required to provide us with stronger insights.

VI. THREATS TO VALIDITY

Our experiments are based only on well-engineered Java

systems [33], meaning the results may not generalize to

systems written in other languages. The type and volume of de-

tected renaming refactorings are limited to RefactoringMiner’s

capabilities. However, RefactoringMiner is currently the most

accurate refactoring detection tool [67] and is widely used in

research concerning refactorings.
Our experiment on developer experience utilized project

contributions as a proxy for the developer’s experience; an

approach we followed from a similar study. As with many

software metrics, this metric is not perfect, and may not always

appropriately measure experience.
Part of this work analyzed commit messages. To mitigate

bias in deciding the terms to present after commit message

analysis, we used a peer-review approach. The authors re-

viewed the entire list of generated terms and decisions that

were made had to be unanimous. Furthermore, we manually

referred to the entire commit message to verify the context

around the terms of interest.
Because of our partial reliance on NLTK to detect semantic

changes performed via rename, there is a threat that some

of the conclusions drawn by the semantic change detection

algorithm may be inaccurate. We mitigate this by thorough

testing of the tool, but it is known that tools trained specifically

on software engineering data tend to generalize better than

tools trained on general natural language data and applied to

source code [8], [68]. Unfortunately, there are no models for

software data that offer word relation data similar to NLTK.

VII. CONCLUSION, DISCUSSION, FUTURE WORK

In this paper we used refactorings, static analysis, and

commit messages to understand characteristics of changes

applied to names and to determine if these changes correlate to

different developer activities (e.g., narrowing of a name after

applying extract method). Our long term goal is to support

recommendation of when/how to rename identifiers and to

understand more about developer naming mental models. This

study brings us a step closer to achieving this goal by showing

us some interesting trends in developer behavior with respect

to renaming as well as by highlighting where our methodology

is weak or where we lack data. We discuss our findings below.

RQ1 shows us that developers with relatively less expe-

rience than their peers have a higher likelihood of applying

rename refactorings than other types of refactorings. RQ2

shows us what types of refactorings happen before a rename

and that there are some specific terms that are associated with

these refactorings which can help us understand some of the

motivation behind renames occurring directly afterward and

help us determine when we should suggest applying a rename.

Other work has similarly shown how specialized terminology

indicates developer refactoring activities [69]. The data also

indicates that the vast majority of renames are not correlated

with any refactoring occurring before or after their application.
More research into these non-refactoring changes is required

since only a minority of renames happen directly after a

refactoring. Finally, in RQ3, we saw that there are generally

three types of semantic changes that frequently occur during

a rename applied after another refactoring: Narrow, Broaden,

and Add meaning. When analyzing commit messages associ-

ated with each of these, we were able to identify terms which

indicate development tasks associated with the type of rename.

While somewhat indicative of the larger context, these terms

were too isolated and required us to manually analyze commit

messages for more context. On the positive side, our data does

show that the motivation for semantic changes is recorded and

can be detected; allowing us to understand more about how

names evolve in the larger software evolution context.
However, it also shows that a significant amount of work is

needed to automatically derive these motivations more effec-

tively from commit messages, other natural language software

artifacts, and general source code changes. In particular, the

biggest problems we faced with analyzing large numbers of

commit messages is that: 1) the terms frequent enough to be

detected are high-level and not descriptive of individual project

efforts (e.g., we can determine that projects are performing

structure changes, but not what types of structural changes

or why). Also, 2) the commit messages often simply do not

contain enough information, potentially indicating the need

for more natural language software artifacts which will likely

be more challenging to analyze automatically. An effective

method for performing this type of analysis would positively

impact our ability to support developers in assigning names,

renaming, and suggesting when and where names need to

evolve. The work we present in this paper shows that this

context is obtainable, but there are still many challenges to it.
In future work, we plan to investigate more effective means

of analyzing commit messages and other natural language

software artifacts to help us address the problems discussed

above. Additionally, we intend to investigate the use of soft-

ware differencing techniques [70], [71] to allow us to analyze

general software changes that occur around a rename. Finally,

the dataset utilized in this study is available on our project

website [35].

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. 1850412.

10

PREPRINT

REFERENCES

[1] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[2] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1 ed., 2008.

[3] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: an ex-
perimental investigation,” J. Prog. Lang., vol. 4, pp. 143–167, 1996.

[4] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, (New York, NY, USA), pp. 31–40, ACM,
2018.

[5] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 217–
227, Feb 2017.

[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in 14th IEEE International Conference on Program
Comprehension (ICPC’06), pp. 3–12, June 2006.

[7] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study,” in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on, pp. 156–165, IEEE, 2010.

[8] D. Binkley, D. Lawrie, and C. Morrell, “The need for software specific
natural language techniques,” Empirical Softw. Engg., vol. 23, pp. 2398–
2425, Aug. 2018.

[9] C. D. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An empirical study of abbreviations and expansions
in software artifacts,” in Proceedings of the 35th IEEE International
Conference on Software Maintenance, IEEE, 2019.

[10] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate
method and class names,” in Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, (New York,
NY, USA), pp. 38–49, ACM, 2015.

[11] K. Liu, D. Kim, T. F. Bissyand, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names,” in Proceedings of the 40th International Conference on Software
Engineering, ICSE 2019, (New York, NY, USA), ACM, 2019.

[12] E. W. Høst and B. M. Østvold, “Debugging method names,” in
Proceedings of the 23rd European Conference on ECOOP 2009 —
Object-Oriented Programming, Genoa, (Berlin, Heidelberg), pp. 294–
317, Springer-Verlag, 2009.

[13] S. L. Abebe and P. Tonella, “Automated identifier completion and
replacement,” in 2013 17th European Conference on Software Main-
tenance and Reengineering, pp. 263–272, March 2013.

[14] Y. Kashiwabara, Y. Onizuka, T. Ishio, Y. Hayase, T. Yamamoto, and
K. Inoue, “Recommending verbs for rename method using association
rule mining,” in 2014 Software Evolution Week - IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), pp. 323–327, Feb 2014.

[15] C. D. Newman, A. Peruma, and R. AlSuhaibani, “Modeling the rela-
tionship between identifier name and behavior,” in Proceedings of the
35th IEEE International Conference on Software Maintenance, IEEE,
2019.

[16] Refactoring: Improving the Design of Existing Code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[17] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y. Guhneuc, “A new
family of software anti-patterns: Linguistic anti-patterns,” in 2013 17th
European Conference on Software Maintenance and Reengineering,
pp. 187–196, March 2013.

[18] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,
and Y.-G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Trans. Softw. Eng., vol. 40, pp. 502–532, May 2014.

[19] C. D. Newman, R. S. AlSuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical categories for source code identifiers,” in 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 228–239, Feb 2017.

[20] R. S. Alsuhaibani, C. D. Newman, M. L. Collard, and J. I. Maletic,
“Heuristic-based part-of-speech tagging of source code identifiers and
comments,” in 2015 IEEE 5th Workshop on Mining Unstructured Data
(MUD), pp. 1–6, Sep. 2015.

[21] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier informa-
tiveness using part of speech information,” in Proceedings of the 8th
Working Conference on Mining Software Repositories, MSR ’11, (New
York, NY, USA), pp. 203–206, ACM, 2011.

[22] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech
tagging of program identifiers for improved text-based software en-
gineering tools,” in 2013 21st International Conference on Program
Comprehension (ICPC), pp. 3–12, May 2013.

[23] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An
empirical investigation of how and why developers rename identifiers,”
in International Workshop on Refactoring 2018, 2018.

[24] H. Liu, Q. Liu, Y. Liu, and Z. Wang, “Identifying renaming opportunities
by expanding conducted rename refactorings,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 887–900, 2015.

[25] H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est
omen: Exploring and exploiting similarities between argument and
parameter names,” in Software Engineering (ICSE), 2016 IEEE/ACM
38th International Conference on, pp. 1063–1073, IEEE, 2016.

[26] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[27] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the
role of naming in computer programs,” in In Proc. of the 18th Annual
Psychology of Programming Workshop, 2006.

[28] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in 2009 16th
Working Conference on Reverse Engineering, pp. 31–35, Oct 2009.

[29] https://github.com/coremedia/jangaroo-tools/commit/7a494f1.
[30] https://github.com/coremedia/jangaroo-tools/commit/fc54b3f.
[31] https://github.com/3wks/thundr/commit/53aaf15.
[32] https://github.com/3wks/thundr/commit/9b02920.
[33] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github for

engineered software projects,” Empirical Software Engineering, vol. 22,
pp. 3219–3253, Dec 2017.

[34] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in Pro-
ceedings of the 40th International Conference on Software Engineering,
ICSE ’18, (New York, NY, USA), pp. 483–494, ACM, 2018.

[35] “Project website.” https://sites.google.com/g.rit.edu/scanl/.
[36] S. Bird, E. Klein, and E. Loper, Natural language processing with

Python: analyzing text with the natural language toolkit. ”O’Reilly
Media, Inc.”, 2009.

[37] https://github.com/chrisvest/stormpot/commit/459d423.
[38] https://github.com/chrisvest/stormpot/commit/d2931d3.
[39] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”

Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[40] M. Röder, A. Both, and A. Hinneburg, “Exploring the space of topic
coherence measures,” in Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM ’15, (New York,
NY, USA), pp. 399–408, ACM, 2015.

[41] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, pp. 619–654, Jun 2014.

[42] D. E. Krutz, N. Munaiah, A. Peruma, and M. Wiem Mkaouer, “Who
added that permission to my app? an analysis of developer permis-
sion changes in open source android apps,” in 2017 IEEE/ACM 4th
International Conference on Mobile Software Engineering and Systems
(MOBILESoft), pp. 165–169, May 2017.

[43] https://github.com/stripe/stripe-java/commit/4fdadaf.
[44] https://github.com/stripe/stripe-java/commit/19d4d5a.
[45] https://github.com/atlasapi/atlas-model/commit/4da9fc2.
[46] https://github.com/atlasapi/atlas-model/commit/fc19c98.
[47] https://github.com/heroku/heroku.jar/commit/008dbc2.
[48] https://github.com/heroku/heroku.jar/commit/0c1c18d.
[49] https://github.com/mapfish/mapfish-print/commit/bc1f422.
[50] https://github.com/mapfish/mapfish-print/commit/fe44bd1.
[51] https://github.com/davemckain/qtiworks/commit/2a1f9df.
[52] https://github.com/davemckain/qtiworks/commit/9cb51b2.
[53] https://github.com/mung3r/ecocreature/commit/42e5d9f.
[54] https://github.com/ismavatar/lateralgm/commit/2d1bdaf.
[55] https://github.com/ismavatar/lateralgm/commit/e41c4c5.
[56] https://github.com/liveramp/jack/commit/762b540.
[57] https://github.com/liveramp/jack/commit/b331247.
[58] https://github.com/motech/ananya-kilkari/commit/b3b95f4.

11

PREPRINT

[59] https://github.com/buchen/portfolio/commit/1bdeccb.
[60] https://github.com/eclipse-vertx/vert.x/commit/921c69e.
[61] https://github.com/jetbrains/teamcity-nuget-support/commit/da10d2c.
[62] https://github.com/davemckain/qtiworks/commit/0c924ab.
[63] https://github.com/jrebirth/jrebirth/commit/d82fb1b.
[64] https://github.com/unquietcode/flapi/commit/4586325.
[65] https://github.com/buchen/portfolio/commit/9fc2fad.
[66] https://github.com/buchen/portfolio/commit/e1d7472.
[67] L. Tan and C. Bockisch, “A survey of refactoring detection tools,” in

Software Engineering, 2019.
[68] R. Jongeling, P. Sarkar, S. Datta, and A. Serebrenik, “On negative results

when using sentiment analysis tools for software engineering research,”
Empirical Software Engineering, 01 2017.

[69] E. A. Alomar, M. W. Mkaouer, and A. Ouni, “Can refactoring be
self-affirmed? an exploratory study on how developers document their
refactoring activities in commit changes,” in Proceedings of the 3rd
International Workshop on Refactoring, (New York, NY, USA), ACM,
2019.

[70] M. J. Decker, srcDiff: Syntactic Differencing to Support Software Main-
tenance and Evolution. PhD thesis, 2017.

[71] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, (New York, NY, USA), pp. 313–324, ACM,
2014.

12

PREPRINT

