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Abstract—Developers must comprehend the code they will1

maintain, meaning that the code must be legible and reasonably2

self-descriptive. Unfortunately, there is still a lack of research and3

tooling that supports developers in understanding their naming4

practices; whether the names they choose make sense, whether5

they are consistent, and whether they convey the information6

required of them. In this paper, we present IDEAL, a tool that7

will provide feedback to developers about their identifier naming8

practices. Among its planned features, it will support linguistic9

anti-pattern detection, which is what will be discussed in this10

paper. IDEAL is designed to, and will, be extended to cover11

further anti-patterns, naming structures, and practices in the12

near future. IDEAL is open-source and publicly available, with13

a demo video available at: https://youtu.be/fVoOYGe50zg14

I. INTRODUCTION15

Program comprehension is a precursor to all software main-16

tenance task [1]; it is essential that a developer understands17

the code they will be modifying. Therefore, maintaining the18

internal quality of the code over its lifetime is of paramount19

importance. As fundamental elements in the source code,20

identifier names account, on average, for almost 70% of the21

characters in a software system’s codebase [2] and play a22

significant part in code comprehension [3], [4]. Low quality23

identifiers can hinder developers’ ability to understand the24

code [5], [6]; well-constructed names can improve compre-25

hension activities by an estimated 19% [7].26

However, there is still very little support for developers27

in terms of helping them craft high-quality identifier names.28

Research has examined the terms or structure of names [2],29

[7]–[10] and produced readability metrics and models [11]–30

[13] to try and address this problem. However, they still31

fall short of providing tangible advice for improving naming32

practices in developers’ day-to-day activities. The work we33

present in this paper is designed to operate within an IDE,34

or a CLI, setting and provide real-time advice to developers35

about their naming practices.36

A. Goal37

Our work aims to provide the research and developer38

community with an open-source tool, IDEAL, that detects and39

reports violations in identifier names for multiple program-40

ming languages using static analysis techniques. In addition41

to identifying the identifier(s) exhibiting naming issues in the42

source code, IDEAL also provides necessary information for43

each reported violation so that appropriate action(s) can be44

taken to correct the issue. We envision IDEAL utilized by45

developers in crafting and maintaining high-quality identifier46

names in their projects and also by the research community 47

to study the distribution and effect that various poor naming 48

practices have in the field. 49

B. Contribution 50

IDEAL is a multi-language platform for identifier name 51

analysis. It is context-aware; treating test and production 52

names differently since they have different characteristics [14], 53

[15]. It allows for project-specific configurations and is based 54

on srcML [16], allowing it to support multiple programming 55

languages (specifically, Java and C#). IDEAL is publicly 56

available [17] as an open-source tool to facilitate extension 57

and use within the researcher and developer communities. 58

II. LINGUISTIC ANTI-PATTERNS 59

While the idea behind IDEAL is to support a broad range 60

of identifier naming best practices based on research, we 61

needed a strong place to start fleshing the tool out. We 62

chose to implement the linguistic anti-patterns, which were 63

first conceptualized by Arnaoudova et al. [18]. The primary 64

reasons for this are that the anti-patterns are well-researched 65

and they represent real, tangible identifier naming problems. 66

Further, modern IDEs currently do not support the semantics- 67

aware naming problem detection embodied by the Linguistic 68

Anti-patterns and the current implementations of anti-patterns 69

are: Limited to singular languages, not open source, limited 70

to a single IDE environment, and/or do not provide enough 71

information to the developer to help ameliorate naming issues. 72

Thus, they are a good place for IDEAL to begin providing a 73

direct, positive influence. 74

Linguistic anti-patterns represent deviations from well- 75

established lexical naming practices in source code and act 76

as indicators of poor naming quality. This degradation in 77

quality results in inconsistencies in the source code, leading to 78

misinterpretations causing an increase in developer cognitive 79

load [19]. Detecting such naming violations in the source code 80

is typically a tedious and error-prone task for developers that 81

requires an understanding of the system and a manual analysis 82

of the complete source code. Thus, tool support is warranted. 83

To this extent, studies in linguistic anti-pattern detection 84

investigate the use of static analysis and artificial intelligence 85

(AI) as detection mechanisms. Two variants of LAPD (Lin- 86

guistic Anti-Pattern Detector) by Arnaoudova et al. [18], [20] 87

utilize static analysis to detect these anti-patterns in C++ and 88

Java source code. The C++ version of the tool is available as 89

a standalone command-line executable (but is not open source 90

https://youtu.be/fVoOYGe50zg
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and not extendable), while the Java version is available as91

an Eclipse Checkstyle plugin. The authors report an average92

precision of 72% for the C++ variant of their tool. Fakhoury93

et al. [21] construct and compare AI-based linguistic anti-94

pattern detection models for Java source code. The authors95

report F1-Scores of 88.77% for traditional machine learning96

models and 74.53% for deep neural network models. However,97

these models only report on the presence or absence of a98

linguistic anti-pattern; details around the type of anti-pattern99

present are not provided. In contrast, since IDEAL is built on100

srcML, it supports multiple programming languages. IDEAL101

also provides finer-grain feedback on the types of anti-patterns102

present and how to fix them; making it easy to use for103

developers and researchers. It is also made to be extended104

with further anti-patterns not supported by prior tools, that105

have been found through prior research [14], [15].106

Table I summarizes the linguistic anti-patterns currently107

detected by IDEAL. Anti-Patterns A.* to F.* are the set of108

original anti-patterns defined by Arnaoudova et al. [18], while109

the anti-patterns G.* are anti-patterns unique to IDEAL. Our110

project website [17] provides code snippets from real-world111

open-source systems that highlight examples of these anti-112

patterns. We should also note that as an open-source tool113

IDEAL provides the necessary infrastructure for the inclusion114

of additional anti-patterns.115

III. IDEAL ARCHITECTURE116

Implemented as a command-line/console-based tool in117

Python, IDEAL integrates with some well-known open-source118

libraries and tools in analyzing source code to detect identifier119

name violations. Depicted in Figure 1 is a view of the con-120

ceptual architecture of IDEAL. Broadly, IDEAL is composed121

of three layers– Platform, Modules, and Interface. It utilizes122

well-known tools and libraries used for natural language and123

static analysis, including Spiral [22], NLTK [23], Wordnet124

[24], Stanford POS tagging [25], and srcML [16].125

IV. APPLICABILITY126

Practitioners. By integrating IDEAL into their development127

toolset and workflow, developers are better equipped to128

maintain identifiers in their source code. As a command-129

line/console application, the current version of IDEAL sup-130

ports integration with a build system. Hence, project teams131

can analyze their entire project codebase, or just what was132

changed, during their nightly build process and evaluate the133

report to determine violations that need to be addressed.134

Researchers. We envision the research community utiliz-135

ing IDEAL in studies around program comprehension. With136

the capability of batch-based analysis, IDEAL supports re-137

searchers in conducting large-scale empirical studies. Further-138

more, by supporting Java and C#, IDEAL provides researchers139

to expand their research to multiple programming languages140

and perform comparatison-based studies. Finally, as an open-141

source tool, researchers are provided with the opportunity142

to extend IDEAL by improving existing violation detection143

strategies and introducing new anti-patterns.144
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Fig. 1: Conceptual architectural view of IDEAL.

Educators. IDEAL can be used in a classroom setting to 145

teach students the importance of constructing high-quality 146

identifier names and their impact on software maintenance 147

and evolution. Through this, students will be better prepared 148

to write high-quality code when moving into the industry. 149

V. EVALUATION 150

To understand the effectiveness of IDEAL in correctly 151

detecting identifier naming violations, we subjected IDEAL 152

to two types of evaluation activities. First, we analyzed four 153

popular open-source systems using IDEAL and manually vali- 154

dated the detection results of a statistically significant sample. 155

Our next evaluation strategy involved assessing IDEAL on 156

the sample dataset utilized to evaluate LAPD by comparing 157

the detection results. In the following subsections, we provide 158

details on these two evaluation activities, including numbers 159

around the correctness of IDEAL and qualitative findings 160

based on our manual analysis of source code. 161

A. Evaluation on open-source systems 162

IDEAL can analyze systems implemented in any language 163

supported by srcML. However, currently, it has only been eval- 164

uated using Java and C#. Thus, we selected two popular open- 165

source systems for each of these programming languages. 166

To this extent, Retrofit [26] and Jenkins [27] were the two 167

Java systems, while Shadowsocks [28] and PowerShell [29] 168

were the C# systems; Table II summarizes the release of each 169

system that was part of our evaluation analysis. A breakdown 170

of our validation results is available at [17]. 171

For each of the four systems, we manually analyzed a 172

random stratified statistically significant (i.e., confidence level 173

of 95% and confidence interval of 10%) set of detected 174
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TABLE I: Summary of the linguistic anti-pattern detection rules IDEAL utilizes.

Id Pattern Detection Strategy

A.1 “Get” more than accessor Impacted Identifiers: Method Names (excludes test methods)
The name starts with ‘get’, the access specifier is public/protected, the name contains the name of an attribute, the return
type is the same as the attribute type, and the body contains conditional statements

A.2 “Is” returns more than a
Boolean

Impacted Identifiers: Method Names (excludes test methods)
The name starts with a predicate/affirmation related term and the return type is not boolean

A.3 “Set” method returns Impacted Identifiers: Method Names
The name starts with ‘set’ and the return type is not void

A.4 Expecting but not getting
single instance

Impacted Identifiers: Method Names (excludes test methods)
The last term in the name is singular and the name does not contain terms that are a collection type and the return type
is a collection

B.1 Not implemented
condition

Impacted Identifiers: Method Names
The name contains conditional related terms in the name or comment and body does not conditional statements

B.2 Validation method does
not confirm

Impacted Identifiers: Method Names (excludes test methods)
The name starts with a validation-related term, does not have a return type and does not throw an exception

B.3 “Get” method does not
return

Impacted Identifiers: Method Names (excludes test methods)
The name starts with a ‘get’ related term and the return type is void

B.4 Not answered question Impacted Identifiers: Method Names (excludes test methods)
The name starts with a predicate/affirmation related term and the return type is void

B.5 Transform method does
not return

Impacted Identifiers: Method Names (excludes test methods)
The name starts with or an inner term constains a transformation term and the return type is void

B.6 Expecting but not getting
a collection

Impacted Identifiers: Method Names (excludes test methods)
The name starts with a ‘get’ related term, the name contains a term that is either plural or a collection type and the
return type is not a collection-based type

C.1 Method name and return
type are opposite

Impacted Identifiers: Method Names (excludes test methods)
An antonym relationship exists between terms in an identifiers name and data type

C.2 Method signature and
comment are opposite

Impacted Identifiers: Method Names (excludes test methods)
An antonym relationship exists between either terms in an identifiers name or data type and comments

D.1 Says one but contains
many

Impacted Identifiers: Attributes, Method Variables and Parameters
The last term in the name is singular and the data type is a collection

D.2 Name suggests Boolean
but type does not

Impacted Identifiers: Attributes, Method Variables and Parameters
The starting term should be predicate/affirmation related and the data type is not boolean

E.1 Says many but contains
one

Impacted Identifiers: Attributes, Method Variables and Parameters
The last term in the name is plural and the data type is not a collection

F.1 Attribute name and type
are opposite

Impacted Identifiers: Attributes, Method Variables and Parameters
An antonym relationship exists between terms in an identifiers name and data type

F.2 Attribute signature and
comment are opposite

Impacted Identifiers: Attributes, Method Variables and Parameters
An antonym relationship exists between either terms in an identifiers name or data type and comments

G.1 Name contains only
special characters

Impacted Identifiers: Attributes, Method, Method Variables and Parameters
The name of the identifier is composed of only non-alphanumeric characters

G.2 Redundant use of “test”
in method name

Impacted Identifiers: Methods (excludes non-test methods)
The name starts with the term ‘test’

violations for each category. In total, we manually verified175

2,019 instances of naming violations spread across the four176

systems. Table III provides a breakdown of the number of177

violation instances for each category. As part of the man-178

ual analysis process and to mitigate bias, the authors dis-179

cussed specific violation instances that were subjective and,180

at times, referenced literature (grey and reviewed) to aid181

in the decision-making process. IDEAL reports an average182

precision of 75.27%, with 14 out of 19 violation types183

reporting a precision of over 50%. Though LAPD reports184

an average precision of 72%, we manually validate 1,267185

more instances than LAPD. Furthermore, even though IDEAL 186

supports customization per project (e.g., specifying custom 187

collection data types and terms), our evaluation strategy did 188

not utilize this feature in order to maintain consistency in 189

violation detection across the four systems. From Table III, we 190

observe that while IDEAL performs notably well in detecting 191

all A.*, D.*, and E.* violations (precision score of over 192

80%). These are anti-patterns where the identifier either does 193

or contains more than what is required. In most instances, 194

IDEAL can accurately process the return/data type of the 195

identifier to determine violations. However, there are also 196
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TABLE II: Summary of the systems in our evaluation process.

System Language Version Release
Date

Files
Analyzed

Issues
Detected

Retrofit Java 2.9.0 May-2020 282 192

Jenkins Java 2.293 May-2021 1,688 4,818

Shadowsocks C# 4.4.0.0 Dec-2020 88 275

PowerShell C# 7.1.3 Mar-2021 1,290 8,455

violations that are challenging for IDEAL to analyze and197

hence result in a large volume of false positives (e.g., C.2).198

Our manual analysis of these false-positive instances shows199

patterns that, in most cases, are causing IDEAL to report them200

as issues. First, since developers utilize custom data/return201

types for identifiers in their code, IDEAL fails in identifying202

their intended purpose. For instance, ‘EnvVars’ is a custom203

type created by a developer to hold a collection of specific204

items. The developer returns this type in a method called205

‘getEnvironmentVariables2’. Since IDEAL is unaware that206

‘EnvVars’ is a collection-based type, it flags this as a violation207

since the method is supposed to return a collection (i.e., this208

get method name contains a plural term– ‘Variables’). We are209

confident that once developers configure IDEAL to handle210

custom types, false positives, similar to this, will reduce. Our211

next observation is on how IDEAL analyzes lexical relation-212

ships between words; specifically, concerning antonyms (i.e.,213

C.* and F.*). While IDEAL correctly recognizes antonyms,214

the context around how these terms are used, either in the215

identifier’s name or comment, is not considered, resulting216

in false positives. Additionally, we also observe that naming217

habits/conventions also cause the emergence of antonyms. For218

instance, consider the method ‘GetCompletionResult’ with a219

return type called ‘CompletionResult’. IDEAL determines that220

‘Get’ and ‘Result’ are antonyms, which are lexically valid, but221

a false positive due to naming conventions. Similar to the last222

challenge, context around the use of transformation terms (i.e.,223

B.5) and conditional terms (i.e., B.1) cause the reporting of a224

high volume of false positives. While IDEAL correctly detects225

these terms in the source code, how the developer utilizes the226

term in a name or comment is currently a challenge.227

Finally, our manual review of the source code also allowed228

us to observe other poor naming/coding practices, which can229

be future linguistic anti-patterns. For example, the generic230

terms ‘data’ and ‘result’ are subjective. When used as part of231

an identifier’s name, it is unknown if the identifier handles a232

single item or collection of items. Likewise, the use of the type233

‘var’ (in C#) and ‘object’ also does not indicate the type of data234

the identifier handles. Ideally, to convey the purpose/behavior235

of the identifier correctly, developers need to be specific in236

naming identifiers and data types when possible.237

B. Comparison with LAPD238

In this part of our evaluation we compare the correctness of239

IDEAL with LAPD. To this extent, we analyze a sample of the240

source files that were utilized to evaluate the effectiveness of241

LAPD and compare the results. Since IDEAL implements the242

anti-patterns available in LAPD, it is essential to understand243

TABLE III: Summary of the detection correctness of IDEAL.

Id. Detected
Instances

Validated
Samples

True
Positives

False
Positives Precision

A.1 53 34 34 0 100.00%

A.2 45 37 37 0 100.00%

A.3 129 64 63 1 98.44%

A.4 341 127 102 25 80.31%

B.1 912 171 73 98 42.69%

B.2 446 166 165 1 99.40%

B.3 260 101 101 0 100.00%

B.4 18 16 5 11 31.25%

B.5 271 107 46 61 42.99%

B.6 827 159 128 31 80.50%

C.1 139 74 54 20 72.97%

C.2 294 112 13 99 11.61%

D.1 3,359 262 261 1 99.62%

D.2 83 53 53 0 100.00%

E.1 5,506 268 253 15 94.40%

F.1 38 32 19 13 59.38%

F.2 165 91 15 76 16.48%

G.1 1 1 1 0 100.00%

G.2 853 144 144 0 100.00%

Overall 13,740 2,019 1,567 452 75.27%

the areas where IDEAL under- and overperforms. In total, we 244

analyzed 209 Java files and detected 294 violations. From this, 245

both IDEAL and LAPD matched 199 true positive instances 246

and 19 false positive instances. Furthermore, 47 instances 247

identified as LAPD false positives were not detected by 248

IDEAL, highlighting where IDEAL outperforms LAPD. Most 249

of these instances were associated with C.2, D.1, and E.1. 250

Finally, we also encounter instances where IDEAL does not 251

detect LAPD true positives. While some of these issues are due 252

to custom data types, we also encounter subjective instances, 253

most of which (10 instances) fall under D.2. 254

VI. CONCLUSION AND FUTURE WORK 255

This paper introduced IDEAL, an open-source configurable 256

tool that detects 19 types of identifier naming violations in 257

Java and C# code. A comprehensive evaluation of IDEAL 258

reports an average precision of 75.27%. Our future work 259

involves increasing support of additional anti-patterns and 260

naming structures (including naming structures derived in 261

other research [14], [15]), utilizing a source code specialized 262

part-of-speech-tagger [30], and IDE integration. A summary 263

of the naming practices IDEAL will support is available in 264

the Identifier Name Structure Catalogue [31]. 265
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