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Abstract
To meet project timelines or budget constraints, developers inten-
tionally deviate from writing optimal code to feasible code in what
is known as incurring Technical Debt (TD). Furthermore, as part of
planning their correction, developers document these deficiencies
as comments in the code (i.e., self-admitted technical debt or SATD).
As a means of improving source code quality, developers often
apply a series of refactoring operations to their codebase. In this
study, we explore developers repaying this debt through refactor-
ing operations by examining occurrences of SATD removal in the
code of 76 open-source Java systems. Our findings show that TD
payment usually occurs with refactoring activities and developers
refactor their code to remove TD for specific reasons. We envision
our findings supporting vendors in providing tools to better support
developers in the automatic repayment of technical debt.

1 Introduction
In 1992, Ward Cunningham coined the debt metaphor when ex-
plaining to product stakeholders the need to keep improving the
quality of their software through refactoring [10]. Since then, Tech-
nical Debt (TD) has become a reference to any non-optimal code
shipped to production with the promise of enhancing it in the next
cycle, i.e., developers owe users better software in a future release.
In this context, Self-Admitted Technical Debt (SATD) refers to devel-
opers deliberately admitting the existence of TD in their system by
keeping track of it through inline documentation, which typically
manifests in the form of source code comments that describe an
anomaly of a code element (e.g., class, method, etc.) [15, 23].

Since SATD is a declaration of the need to update the system,
several studies have analyzed its removal to understand better how
developers address the issues mentioned in the comments, and
consequently manage and reduce TD [12–14, 18, 26]. Yet, little is
known about the extent to which refactoring contributes to the
removal of the issues documented in the SATD comments. For
example, in Listing 1, the comment mentions the need to rename
a method name as per its current implementation. Therefore, the
fix of this SATD was performed through the application of the
Rename Method refactoring, where the method getVertexName()
was renamed to getName(), with the commit message “Replace
confusing names on Vertex API”.

1 - public String getVertexName()

2 - // FIXME rename to getName()

3 + public String getName()

Listing 1: Code diff showing the renaming of a method due
to its associated technical debt comment and the removal of
the same comment [4].

1.1 Goal & Research Questions
The goal of this paper is to explore the co-occurrence of refactorings
with the removal of SATD. We also distill the types of debt being
addressed by extracting topics from the text of the comments. To
this end, we answer the following Research Questions (RQs):
• RQ1: To what extent do developers refactor code when
removing technical debt? This RQ gives us insight into the vol-
ume of occurrence of technical debt in our dataset and examines
the types of refactorings that developers frequently apply.

• RQ2: What motivates a developer to refactor their source
code to remove technical debt? Since SATD are indicators
of shortcomings in the code, this RQ examines the repayment
categories for which developers refactor their code.

2 Experiment Design
Figure 1 outlines the experiment for our study. In the following
subsections, we describe the elements and activities that were part
of our methodology. Our replication package is available at [1].
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Figure 1: Overview of our experiment design.

2.1 Source Dataset
In this study, we utilize the SmartSHARK MongoDB Release 2.1 (full
version) dataset [28]. The dataset contains the commit details of 77
open-source Java projects that are part of the Apache ecosystem
and utilize GitHub as their project repository. Furthermore, the
dataset also contains the changed hunks (including diffs) of each
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Table 1: Summary of the extracted data.

Item Value

Count of total projects 77
Count of commits in all projects 366,322
Count of projects with SATD removed 76
Count of commits with SATD removed 13,259
Count of refactoring operations 703,260
Count of commits with refactorings 67,582
Count of refactoring commits with SATD removed 7,341

file and utilizes RefDiff [25] and RefactoringMiner [29] to mine
refactoring operations. Furthermore, the authors of the dataset
indicate if a commit includes the removal of SATD by analyzing the
code comment diffs in the source files associated with the commit.
The authors examine the comment diffs for the presence or removal
of the terms: “TODO”, “FIXME”, and “XXX”.

2.2 Extracted Dataset
Since the source dataset contains an abundance of data, some of
which is not related to our study, we built custom scripts to extract
data pertinent to our study (i.e., commits, hunks, refactorings) from
the source dataset into an SQLite database for analysis. First, we
extract all commits with a label showing SATD removal. Next,
we extract all refactoring operations. However, due to the use of
two refactoring mining tools, there are duplicate operations in
the source data. Hence, our next step removes all duplicates by
comparing the refactoring descriptions. After that, we select all
commits associated with a refactoring operation. Finally, we extract
all hunks (i.e., code diffs) in files associated with the extracted
refactoring commits. Table 1 is a summary of the extracted data.

2.3 Data Analysis
Our analysis of the extracted data follows a mixed-methods ap-
proach, where we collect and analyze both quantitative and qual-
itative data [27]. This approach presents us with the opportunity
to provide representative samples from the dataset to complement
our findings. Our quantitative approach utilizes well-established
statistical measures and custom code/scripts on our dataset to re-
port trends and patterns. In Section 3, we elaborate in detail on our
analysis approach to answering each research question.

3 Experiment Results
In this section, we report on the findings of our experiments by
answering our RQs. To answer our RQs, we utilize SATD as a
proxy for technical debt, and hence, the removal of such com-
ments indicates that developers removed technical debt code from
the same source code file. For each RQ, we first explain the primary
motivation(s) and the approach we undertake to produce the results,
then we present our findings.

RQ1: To what extent do developers refactor code
when removing technical debt?
RQ1 provides a deep-dive quantitative-based examination of refac-
toring operations co-occurring with technical debt removal. To this
extent, this RQ looks into the volume of occurrence of technical

Table 2: Statistical summary of technical debt removal related
to files in a commit and applied refactoring operations.

Min. 1st Qu. Median Mean 3rd Qu. Max.
Files in a refactoring commit having technical debt removed

1 5 12 54.56 25 7593
Files in a refactoring commit without technical debt removed

1 2 4 10.04 10 2315
Refactoring operations in a file with technical debt removal
1 1 2 3.278 4 96

Refactoring operations in a file without technical debt removal
1 1 1 2.774 3 161

debt in our dataset and examines the types of refactorings that
developers frequently apply.
Approach:A limitation of the source dataset is that it only provides
the commit associated with a refactoring operation and not the
actual source file to which the refactoring is applied. Therefore,
our examination is limited to the commit level. First, we look at all
occurrences of refactoring commits having technical debt removed,
and then (to mitigate false positives) we narrow our analysis to only
refactoring commits containing a single file with technical debt
removed. We opt for this decision as it allows us to analyze cases
where the removed TD and the refactoring are co-located in the
same code. When analyzing commits with one file, we select two
groups of refactored files– those that have technical debt removed
and those that do not.
Analysis 1: Volume of refactoring and technical debt removal.
First, we observe that 76 of the 77 projects in our dataset contain
technical debt removal and the application of refactoring operations.
We encounter 7,341 commits having refactorings and technical debt
removal. This is around 55.37% of all commits labeled as having
technical debt removed in the source dataset (with and without
refactoring). As our study is on the relationship between technical
debt removal and refactoring, we focus on the 7,341 refactoring com-
mit instances. In contrast, 60,241 (or 89.14%) refactoring commits
do not show the removal of technical debt. Our dataset contains
395 (or 5.38%) refactoring commits with only one file that exhibits
the removal of technical debt. Conversely, there are 10,845 (or 18%)
refactoring commits with only one file that does not have technical
debt removed. Our analysis also includes measuring the association
between debt repayment and refactoring by performing an odds
ratio (OR) test for each of the 76 systems. All 76 systems have an
OR > 1, with the value of 74 systems being statistically significant
(i.e., 𝑝-value < 0.05), showing a greater likelihood of debt repayment
through refactoring activities.

Next, we look at the volume files and refactoring operations.
Since a commit can contain more than one file, an examination
of commits shows the median number of files with technical debt
removal in a refactoring commit is 12. In contrast, the median value
in a refactoring commit without technical debt removal is 4. The
complete statistical summary is in Table 2. Finally, we compare
the differences between the number of refactoring operations in
each file type (i.e., with and without technical debt removal). We
utilize the non-parametric Mann Whitney U test as the data is not
normally distributed. In this test, our null hypothesis (H0) is that the
distribution of refactoring operations for the two groups is equal.
The results of the test yield 𝑝-value < 0.05, thereby rejecting H0
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Table 3: Distribution of top 10 refactoring operations on commits containing a single file with and without SATD removal.

Commit with one file with SATD removal Commit with one file without SATD removal
Refactoring

Operation Type
Total
Count Percentage Avg. Operation

Counts Per File
Refactoring

Operation Type
Total
Count Percentage Avg. Operation

Counts Per File
Extract Method 289 22.32% 2.16 Change Variable Type 6,519 21.67% 2.39
Change Variable Type 234 18.07% 2.27 Extract Method 6,188 20.57% 2.36
Rename Variable 141 10.89% 1.60 Rename Variable 2,648 8.80% 1.54
Rename Method 126 9.73% 1.66 Rename Method 2,473 8.22% 1.78
Rename Parameter 99 7.64% 1.90 Extract Attribute 2,459 8.17% 3.01
Extract Attribute 96 7.41% 5.05 Extract Variable 2,336 7.76% 1.32
Inline Method 58 4.48% 2.07 Change Return Type 2,054 6.83% 2.22
Extract Variable 54 4.17% 1.17 Rename Parameter 1,672 5.56% 1.81
Rename Attribute 51 3.94% 1.59 Rename Attribute 896 2.98% 1.43
Change Return Type 43 3.32% 1.48 Inline Method 591 1.96% 1.70
Other Operations 104 8.03% N/A Other Operations 2,248 7.47% N/A

and shows that a difference between the population is statistically
significant.
Analysis 2: Refactoring operations typically co-occuringwith
technical debt removal.
Shown in Table 3 are the frequently occurring refactoring oper-
ations developers apply to a file when removing SATD and also
the operations that are frequent in source files where there is no
removal of SATD. Comparing these two categories shows that the
top ten refactoring operations are the same, even though the per-
centage frequency of occurrence for some differ. Furthermore, we
observe that the files without technical debt removal undergo more
types of refactoring operations; 32 types against 21. Looking at
the average number of operations in a file, we observe develop-
ers frequently apply the Extract Attribute operation to the class
followed by Change Variable Type and Extract Method. Next, we
apply a Fisher’s Exact Test to examine a statistically significant
association between the average number of refactoring operations,
of each refactoring type, applied to a file with and without technical
debt. We utilize this test since we are comparing two categorical
groups. In this test, variable independence is our null hypothesis
(H0). The results yield a 𝑝-value > 0.05, resulting in the acceptance
of H0. Therefore, showing the developers apply the different refac-
toring operations to improve the quality of the code regardless if
the developer is addressing technical debt concerns in the code.

Summary for RQ1. The repayment of technical debt is an
activity that developers often perform when refactoring code
by applying a variety of refactoring operations, with Extract
Attribute frequently applied multiple times in a file. Furthermore,
there is a significant difference in the volume of refactorings
developers apply when removing technical debt compared to
general maintenance activities.

RQ2: What motivates a developer to refactor
their source code to remove technical debt?
The previous RQ shows that removing technical debt is often asso-
ciated with a refactoring activity. However, we lack context around
the rationale. As SATD-related comments indicate shortcomings
in the existing code, removing such comments is usually an indi-
cator that developers correct the deficiency. Hence, an analysis of
these comments provides insight into the issues the developer is
correcting by performing one or more refactoring operations. To

this end, this RQ constructs a grouping of technical debt categories
developers resolve through refactoring.
Approach: First, we extract bigrams frequently occurring in SATD
comments, following an approach similar to Peruma et al. [22]. We
utilize bigrams as they provide more context for the terms and
thereby help in reducing false presumptions. Additionally, we also
extract the refactoring-specific terminology in these comments.
Our extraction process involves programmatically examining each
source file associated with a refactoring commit and extracting the
set of removed SATD comments. These comments are available in
the diff hunks of the source dataset. We then normalize the text
using a series of pre-processing activities, including converting the
text to lowercase, expanding contractions, removing non-alphabetic
characters, digits, ASCII punctuation characters, and stopwords
(standard English terms and terms specific to the dataset).

Table 4 shows the top ten frequently occurring bigrams in our
dataset, while Table 5 shows the dataset’s top ten frequently occur-
ring (stemmed) refactoring terms. Our analysis of these extracted
bigrams and terms results in us proposing the below categories as
rationales for technical debt repayment via refactoring.

Error Handling: Improving error handling is a frequent area of
technical debt that developers address when refactoring their code.
This is evident by the frequent occurrence of the bigrams: ‘catch
block’, ‘error handling’, ‘exception handling’, and ‘throw exception’.
Looking at the removed comments, we observe text such as “TODO:
We could use a better strategy for error handling” and “TODO: Fix
exception handling”. This shows that developers knowingly write
code prone to errors or utilize generic (or auto-generated) error
handling and then make necessary corrections when refactoring
their code in later revisions of the codebase. For example, in Listing
2, the developer removes code that always returns a null value.

4 public Object nextElement ()
5 {
6 return null;// TODO: check exception handling
7 }

Listing 2: Removal of erroneous code [7].

Code & Structural Improvements: This category comprises of
two sub-categories– 1) Clean-up Activities and 2) Design Improve-
ments. Clean-up activities can include removing temporary code or
renaming identifiers, such as in the case the developer renames an
identifier (e.g., “TODO - Rename variable to commandId” [5]). From
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Table 4: Top ten frequent bigrams in SATD comments

Bigram Count Percentage

catch block 1,037 6.03%
make thisdefault 89 0.52%
make sure 76 0.44%
get rid 63 0.37%
error handling 59 0.34%
pessimistic read 56 0.33%
exception handling 51 0.30%
throw exception 50 0.29%
implement needed 42 0.24%
add repository 40 0.23%
Others 15,637 90.91%

Table 5: Top ten frequent (stemmed) refactoring terms in
SATD comments.

Term Count Percentage

add 74 20.32%
mov 66 18.13%
fix 51 14.01%
remov 48 13.18%
chang 26 7.14%
creat 25 6.86%
rewrit 11 3.02%
replac 10 2.74%
extend 6 1.64%
merg 6 1.64%
Others 41 %

prior studies [9, 20], we know that clean-up is an activity associated
with refactoring. Design-level changes include the removing and
moving code (such as moving methods, method extraction, etc.) and
data types changes. Further, the bigram ‘get rid’ is mainly associ-
ated with code the developer needs to remove from the project. For
instance, the comment “TODO get rid of this cast” is addressed by a
Change Attribute Type operation [2]. From Table 5, the terms ‘mov’,
‘remov’, and ‘chang’ are indicators of design-level operations.

Feature Updates: This category comprises of refactoring oper-
ations developers perform to incorporate feature changes in the
system. For instance, the term‘implement’ is a placeholder for the
developer to update the functionality, as in the example of “FIXME:
our implementation is flawed...”, in which the developer applies
a Move Attribute refactoring in addition to a series of other code
changes [3]. In another example, we encounter the removal of
the comment “TODO: we can probably get a more efficient imple-
mentation...” with an Extract Attribute refactoring [6]. A similar
placeholder term developers utilize is ‘add’, like in the example
“TODO: Add method to extract...”, which is resolved by an Extract
Method operation combined with other changes [8].

Summary for RQ2. Analysis of SATD comments show that
developers refactor to repay technical debt related to error han-
dling, code optimization, and system features.

4 Threats To Validity
Though our dataset is limited to Java systems, the 76 systems are
well established and widely utilized open-source systems. Further-
more, as we utilize an existing dataset, our analysis is limited to the
data points contained within the source dataset. This includes the

dataset authors’ mechanisms/tools to identify SATD comments in
the code (i.e., presence of the terms “TODO”, “FIXME”, and “XXX”)
and mine refactoring operations. Furthermore, since the dataset
does not provide a straightforward mechanism to map SATD com-
ments to an identifier, our analysis of SATD is limited to the file and
commit level and not at the identifier level. That said, the features,
volume, and age of data are more extensive and more recent than
similar datasets [12, 16].

5 Discussion & Conclusion
As an exploratory study, our research aims to understand the ex-
tent of the relationship between technical debt repayment and code
refactoring, and our preliminary findings show promise in further
investigating these trends. Furthermore, we provide direction to
research areas for supporting developers in designing and main-
taining their code.

Our RQ1 findings confirm prior work showing that the removal
of technical debt is frequently associated with refactoring actions
[12, 19, 24]. In contrast, we observe differences in the types of refac-
toring operations that frequently occur. That said, when comparing
the results from prior studies, such as [12] and [30], we observe a
slight consensus between the reported frequent operations. While it
can be argued that the cause can be due to the datasets and mining
tools, further research in this area is warranted, especially since
we did not observe a significant difference between the operations
applied to remove technical debt and general refactoring.

Our RQ2 results provide interesting insight into the association
of refactoring and technical debt repayment and support a further
study to create a more formal and exhaustive set of causes. However,
we see specific parallels with prior work. For instance, the category
of repayment associated with features is also mentioned by [31],
while we share code & structural improvements and error handling
with [11]. Additionally, our categories also share similarities with
the refactoring motivation taxonomy proposed by [9].

Below, we discuss how the findings from our RQs support the
community through a series of takeaways.
Takeaway 1: Support for robust error handling. Our findings
of developers improving error handling in their code is an oppor-
tunity for tool and IDE vendors to provide automated support for
detecting such shortcomings in the code. Furthermore, developers
should also understand that auto-generated try-catch blocks must
be customized as per the project specifications.
Takeaway 2: Improving the accuracy of refactoring recom-
mendation tools/models. With the repayment of technical debt
frequently occurring with refactoring activities, refactoring rec-
ommendation tools/models, such as identifier renaming [17] and
appraisal [21], can improve their accuracy by considering the occur-
rence of such SATD comments in their recommendation approach.
Furthermore, there is a research opportunity for defining a standard
set of composite refactorings to repay common types of debt since
repayment usually involves applying complex changes [31].
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