
PREPRIN
T

® 2023 The Authors.

2023 Conference on Systems Engineering Research

How is Software Reuse Discussed in Stack Overflow?

Eman Abdullah AlOmara*, Anthony Perumab, Mohamed Wiem Mkaouerc, Christian

Newmanc, Ali Ounid

aStevens Institute of Technology, Hoboken, NJ, bUniversity of Hawaii, Honolulu, HI,
cRochester Institute of Technology, Rochester, NY, dETS Montreal, Montreal, Canada

Abstract

Software reuse is a crucial external quality attribute targeted by open-source and commercial projects. Despite that software reuse

has experienced an increased adoption throughout the years, little is known about what aspects of code reuse developers discuss.

In this paper, we present an empirical study of 1,409 posts to better understand the challenges developers face when reusing code.

Our findings show that ‘visual studio’ is the top occurring bigrams for question posts, and there are frequent design patterns utilized

by developers for the purpose of reuse. We envision our findings enabling researchers to develop guidelines to be utilized to foster

software reuse.

© 2023 The Authors.

Keywords: Reusability, Software Reuse, Stack Overflow

1. Introduction

Modern-day software development requires the creation of products that meet quality standards and are also released

in a timely manner. In order to meet these expectations, developers tend to share already implemented components or

pieces of code from one project to another to avoid having to implement the same thing twice [17]. Similarly, the

usage of third-party libraries, APIs, and frameworks have allowed them to reduce the time it takes to create new

software. The practice of creating reusable software and utilizing already existing code to increase productivity is

often referred to as Software Reuse [13]. Other than helping achieve faster development time, software reuse helps in

minimizing efforts and costs. It can also aid in increasing the maintainability and portability of the system [22].

Therefore, a plethora of studies has been advocating for software reuse through good programming principles, design

patterns, libraries, and frameworks. While there are several reuse principles and guidelines in theory, little is known

about what prevents their wide adoption in practice. Thus, it is important to understand the main challenges developers

face when it comes to reusing software, how developers perceive software reuse in practice. Utilizing already built

software can also come at the cost of security, since if the reused software has flaws, those will be added to the new

PREPRIN
T

Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 2

system being constructed, which is why, although it is recommended to reuse whenever possible, it should be done

carefully.

Most quality attributes and aspects of the software development process present challenges in order for them to be

achieved; reusability is not the exception. Online forums are a common way for developers to resolve unexpected

coding or design problems. One of the most used sites where developers converge to ask and answer questions

covering a multitude of topics related to programming, software engineering, and related areas is Stack Overflow

(SO). Since its conception in 2008, SO has seen a yearly increase in its user base, with over 10 million users as of

2019. Because of the growing importance of Stack Overflow as a community of developers, many studies have been

performed to understand the ways developers discuss different topics, and aspects of Stack Overflow and the

community themselves.

In this study, we utilize Stack Overflow to understand the challenges that drive developers to ask questions about and

discuss software reuse. To do this, we mine from Stack Overflow all questions that are tagged as software reuse. Our

findings provide an investigation regarding the common reuse topics the developers discuss in Stack Overflow. In

particular, it focuses on the identification and classification of questions and discussions related to design patterns.

Finally, it provides some observations extracted from the manually analysed questions.

2. Study Design

The main goal of this work is to obtain and share insights with the Software Engineering community regarding how

software reuse is discussed in practice by analyzing Stack Overflow (SO) posts. Figure 1 depicts an overview of our

methodology. We made our dataset publicly available [21].

 Figure 1. Overview of the study methodology.

2.1. Data Extraction

To conduct our study, we plan on extracting our data from Stack Overflow. The data should capture all the necessary
information needed for our study, starting with questions, answers, discussions, and all their corresponding metadata
(publication date, authors, TAGs, source code attached, etc.). We start the mining process through the Data Explorer
web interface which releases a regularly updated data dump of the SO network’s content. We considered all questions,
since Stack Overflow creation, from August 2008, all the way to December 2019.

PREPRIN
T

Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 3

To distinguish reuse-related questions, we started with using the tags “reuse” and “reusability” as they are intuitive.
We have avoided using any extra tags mainly because it has been shown that developers misuse tags in an attempt to
increase views, and a large number of tags tend to cause confusion among posters [9]. Additionally, in order to mitigate
tag misuse issues, the relevancy of the posts and tags were verified during the manual analysis described in Section
2.3, so that we only keep posts related to software reuse. This process consisted of manually reading the title and
question description for each post to assess its relevancy. When the description is ambiguous or short, we refer to any
additional comments made to the question, and then we refer to the proposed answers, which may provide a clearer
description of the problem. For instance, we found multiple posts where the question was vague, but the answers were
clearer based on assuming what the question poster meant, and these assumptions were validated by the poster by
either choosing one as a correct answer or by adding comments to further clarify their question.

1.1. Manual Analysis

Posts Filtering. We included all posts that referred to the reuse of code and reuse of different resources that are relevant

to any of the stages of the Software Development Lifecycle. In addition, we also included questions that were related

to general aspects of software reusability. We excluded all questions that were not related to the aforementioned

aspects. Two authors have performed the manual verification of the questions. This process consisted of manually

reading the title and question description for each post to assess its relevancy. When the description is ambiguous or

short, we refer to any additional comments made to the question, and then we refer to the proposed answers, which

may provide a clearer description of the problem. For instance, we found multiple posts where the question was vague,

but the answers were clearer based on assuming what the question poster meant, and these assumptions were validated

by the poster by either choosing one as a correct answer or by adding comments to further clarify their question.

Duplicate Posts Removal. During the manual validation, we found one duplicate post, 10 posts that were removed

(upon looking for them in Stack Overflow), and 2 posts when accessing them redirected to unrelated questions.

To summarize, our data extraction process initially mined 1,528 reuse-tagged posts, from which 106 were unrelated

to reuse, and 13 were duplicates. After the filtering process, we retained 1,409 posts, created between August 2008

and December 2019.

1.2. Manual Classification

The classification process consists of reading title, questions, answers and comments to classify them based on various

aspects, including the technology used, programming language, and category of reuse. The reuse categories were

extracted from the systematic literature review, performed by Ahmaro et al. [2], on papers published from 1977 to

2013 on the different concepts surrounding Software Reusability. In this work, Ahmaro et al. [2] identified the

following categories: design patterns, component-based development, application frameworks, legacy system

wrapping, service-oriented systems, application product lines, commercial off-the-shelf integration, program

libraries, program generators, aspect-oriented software development and configurable vertical applications. This set

of categories was also supported by Younoussi et al. [25] whose work consisted of another systematic literature review

on All about Software Reusability. During the classification process, we combined questions related to components,

services, and aspects into Development, we also combined program libraries, application frameworks, and commercial

off-the-shelf integration into Third Party Systems. We also noticed the existence of questions that do not fit into the

existing categories, so we have added two categories, namely Refactoring, which can be like design patterns, except

that developers discuss refactoring opportunities without explicitly mentioning any patterns. The second added

category was General, where questions were open-ended, and their answers can belong to various categories.

Our categorization is not mutually exclusive, meaning that one post can be associated with more than one category at

the same time. We also classified the posts regarding the technologies involved in the question. We investigated what

programming language, framework and operating systems. Although most of the times these technologies were

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 4

identified by the posters using the Stack Overflow provided tags, we still focus on the content of the question as the

source for this classification due to previously identified issues involving tags usage. When looking at the content of

the question, we not only referred to explicit mentions of the technologies, but also at implicit ones. Questions that

we were not able to associate to specific technologies, were assigned with N/A (Not Available) but still considered

for the category’s classification.

3. Results

In this section, we present the results for each of the defined specific research questions.

3.1. How have reusability posts grown throughout the years?

This research question examines the growth of reusability posts, questions, and answers on Stack Overflow over the

years. The purpose of this RQ is to understand the extent to which developers require help and advice on reusability-

related problems and how they receive assistance they seek.

Figure 3 shows the temporal trends regarding the number of posts for each year. As can be seen, there is an increasing

trend from 2008 to its peak in 2012. From there until December 2019 when the data was collected there has been a

decrease in the number of posts except for 2016 which had more posts than the previous year. This trend suggests that

due to the wide adoption of code reuse and how it is more and more taught as a fundamental programming practice,

developers don’t need much help to achieve software reuse as compared with other aspects of software engineering.

It is hard to determine the reason for the peak in 2012, because as our complete dataset shows, almost all technologies

presented an increase in their numbers for this year. However, when looking at the original tags that the posters tagged

their questions with iOS showed an increase from 7 posts in 2011 to 25 in 2012. Furthermore, when querying the

complete SO data dumps to search for the temporal trends of the usage of the "iOS" tag, we can see that the number

of posts from 2011 to 2012 almost doubled (from 41,139 to 80,276), an increase that was not seen for any other two

consecutive years. This might be in relation to new features released by Apple regarding their development kit in the

early months of 2012 or during 2011 (as some technologies might take some time to be fully adopted by the

developers). We also observe that questions and accepted answers share a similar pattern between the year-over-year

growth for questions and accepted answers. The number of non-accepted answers slightly fluctuate throughout the

year.

Figure 2 depicts a yearly breakdown of reusability questions, with and without an accepted answer. As can be seen,

other than the period between 2016 and 2019, the number of questions with an accepted answer outnumber questions

without an accepted answer. As the years progress, the number of questions with accepted answers decreases while

questions without accepted answers increases.

3.2. What are the tags that are associated with reusability questions?

Figure 4 shows the top 10 popular tags associated with reusability posts. We observe that 816 questions containing

the `reusability' tag, and 760 questions containing the `code-reuse' tag. The top eight tags were all related to

programming languages or mobile frameworks - Java (143 post), C\# (135 posts), Android (120 posts), JavaScript

(107 posts), iOS (94 posts), PHP (69 posts), C++ (65 posts), and Python (59 posts).

Next, we look at the yearly growth of the eight most popular programming languages' reusability tags in the dataset.

In Figure 4, the volume by which questions associated with each tag either grows or shrinks year-by-year. From the

graph, other than the year of 2011, we see that questions tagged with `reusability' and `code-reuse' share a similar

pattern. We also notice that questions tagged with Java, C#, and Android show a steep increase between 2010 and

2020, while at the same time, we observe the volume of JavaScript slightly decrease, the volume of iOS has steep

increase in 2012, and the volume of PHP, C++ and Python tagged posts being more-or-less constant.

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 5

 Figure 2. Count of reusability questions and answers, per year.

Figure 3. Temporal trend of software reuse posts. Figure 4. Yearly growth of the popular tags associated with reusability posts.

3.3. What are the frequent terms utilized by developers in reusability discussions?

To answer this question, we leverage natural language processing techniques, more specifically bigram analysis, to

extract the frequent bigrams developers utilize in describing their reusability problem. Before our extraction, we first

performed a series of text preprocessing activities on the post's body. These activities ensure that the text is optimized

for our specific analysis [7]. The activities we perform include expansion of word contractions, removing URLs, code

blocks, stop words, alphanumeric words, and punctuation, retaining only nouns, verbs, adjectives, and adverbs, and

lemmatization of words. In addition to standard English stop words (e.g., `a', `and', `the', etc.), we also utilize a set of

custom stop words exclusive to our reusability dataset. To derive the set of custom stop words, we generated and

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 6

manually analyzed the set of frequently occurring words in our corpus. Examples of custom stop words include

`thanks', `question', `answer', etc. The complete set of stop words are available in our replication package.

 Table 1. Top ten frequency occurring bigrams for question posts.

Bigram Count Percentage

Visual studio 37 1.13%

Business logic 36 1.10%

View controller

Partial view

Web application

Copy paste

Base class

Web service

Table view

Aspnet mvc

Others

34

32

32

27

27

26

24

22

2,975

1.04%

0.98%

0.95%

0.83%

0.83%

0.79%

0.73%

0.67%

90.95%

As can be seen in Table 1, the occurrence of `visual studio' should not be surprising as this IDE is fast becoming a

popular choice among the developer community due to its ability in supporting multiple programming languages. As

part of providing context (e.g., development environment) around the reusability challenge, developers mention the

IDE they utilize. Further, examination of the popular bigrams shows that developers frequently face reusability

challenges related to web development as evident by the bigrams `web application', `web service', and `aspnet mvc'.

Additionally, we also observe that developers face challenges around architecture/design (e.g., `business logic' and

`view controller'). Finally, the bigram `copy paste' also shows how the user duplicates reusable code.

In a further analysis of the extracted bigrams, two authors manually analyzed these terms with the aim of grouping

related bigrams. As part of the annotation process, each author annotated the bigrams individually and then discussed

and resolved any annotations that conflicted. Our analysis yields seven groups -- Code Component (35.01%),

Environment (8.93%), Framework/Library (5.04%), Architecture/Design (2.16%), Code Reuse Rationale (3.17%),

Programming Language (1.01%), and Other (44.67%).

Categorized under Code Component, we observe terms that are related to parts of the source code, such as `base class',

`switch_statement', and `static_method'. Under Environment, we see references to tools/IDE's and directories/file

types like `sql_server' and `xml_file', respectively. Bigrams categorized as Framework/Library include those that are

web-related (e.g., `ruby rail' and `javascript jquery') and other specialized libraries (e.g., `entity_framework', `twitter

api', and `facebook api'). Under Architecture/Design, we see references to patterns such as `dependency_injection',

`factory_pattern', etc. The bigrams under Code Reuse Rationale relate to actions or situations that lead developers to

seek reusability assistance; these include `hard_maintain' ,`multiple_place', `avoid repeating', etc. The bigrams under

Programming Language refer to instances where the developer mentions the language for which they require

assistance. The low volume of such bigrams is due to developers preferring to utilize the tag feature to indicate the

programming language. Bigrams that did not fall into any of the other six categories are listed as Other; such terms

include `http request', `add reference', `open source', etc.

3.4. What are the frequent design patterns utilized by developers for the purpose of software reuse?

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 7

Our first investigation aims to understand which Design Patterns (DP) are popular among developers and highly

discussed in SO. So, we start with reporting the distribution of questions with respect to the corresponding DP being

asked. Then we compare all DPs belonging to the same category. Figure 5a is associated with creational design

patterns. As we can see, the Singleton pattern with being the main 47.8% design pattern that almost encapsulates half

of the questions. The Builder design pattern comes second with only 16.4%, but compared to the other design patterns

including Prototype, Abstract Factory, Dependency Injection, Factory Method, it takes the second largest category.

Questions targeting Structural DPs seems to be more evenly distributed. According to Figure 5b, only the Decorator

DP has a significantly large number of questions compared to the remaining DPs, e.g., Adapter, Composite, Facade,

Proxy, whose categories range between 6.9% and 16.7%. For behavioral DPs, we noticed that there are two

categories, the first one contains five design patterns, namely the State pattern, the Strategy, Observer, Command, and

Visitor. These DPs have taken most of the questions with over 80%. The remaining behavioral DPs, including

Mediator, Iterator, Memento, and Interpreter, seem to be not popular since all of them contribute with less than 5% of

questions as seen in Figure 5c.

When contrasting the number of questions per DP with the average time needed to get an accepted answer, we have

noticed that popular patterns, with a high number of questions, are not necessarily the "hardest" to respond to. When

looking at Figures 6a, 6b, 6c, prototype and Dependency injection take a significant time before reaching an accepted

answer. Similarly, while Decorator takes the lead in the number of questions, it is at the bottom, especially when

compared with Bridge or Proxy.

 Figure 8. Breakdown of the volume of instances for each design pattern category.

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 8

 Figure 6. The average time needed to get an accepted answer.

4. Observation

While performing our manual classification, we also noted that comments and observations regarding the analyzed

posts. We present, with extracts from the original posts, some of these observations. For each example, we also

include the QuestionIDs (QID)

Observation. As we expected, several questions were asked because developers wanted to avoid creating the needed

code themselves. Although these underlying needs were also about achieving code reuse, this shows that developers

also look into ready-to-go algorithms from the community that can be reused for their own needs (QID: 1234514):

``Is there a very simple map-base code snippet in C out there that I could use to do the caching? (I just don't want

to reinvent the wheel). [...]"

Observation. Reusability is not only about reusing large blocks of code, we noted a number of questions that discuss

reusability in terms of reusing variables simply to avoid the creation of new ones. For example (QID: 3005259)

 ``[...] Here, I have a writer which archives the object me. Then, I use another CArchive object reader to un-

archive it. Is it possible to re-construct or set any property of writer to make it, the reader instead of declaring

another CArchive object reader?"

Observation. Reusability is discussed targeting company level practices. Questions regarding how to achieve an

organization wide reusability culture and how companies go about reusability are asked. This shows an interest from

the industry workers to increase productivity in their companies by performing reusability (QID: 1475316):

``Frequently when we introduce a new feature into an application we may produce artifacts, such as useful methods

or classes that could be reused in other areas of our applications. [...] Since we often develop in teams, it is important

to share these pieces of code to prevent rework and duplication. [...] I am interested in best practices and proven

techniques around documentation, code diagrams, meetings(?) to ensure code is reused correctly. [...]"

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 9

Observation. Developers typically discuss best practices to share methods, across various, but related projects. They

typically structure them in the form of libraries, and offered via APIs. For instance, this question concerns the creation

of shared internal libraries (QID: 1773634):

``I've noticed in pretty much every company I've worked that they have a common library that is generally shared

across a number of projects. [...] What are the things you have in your common library and more importantly how do

you structure the common libraries to make them easy to improve and incorporate across other projects?"

Observation. A good architecture for any given software product could be said to be the one that better handles the

trade-offs between the non-functional requirements. We noted some questions were asked regarding the priority of

different quality attributes. In this example, QID: 523222, they discuss maintainability, performance and reusability:

``[...] All that being said, I would order: Maintainability (Change is a fact of life.), Performance (No one likes to

stare at the hourglass.), Reusability (Difficult to determine what code should be used again.)."

Observation. One aspect that one would think developers should be more concerned about when trying to reuse code

or libraries found on the web, is the ethics of it and whether it is legal or not. From our dataset, only one question

discussed this (QID: 11023772):

``Say I saw tutorial online on doing something with JavaScript or jQuery on a web page. Is using the code on my

commercial site bad manners or even illegal? I slightly modified it but the important stuff is from the tutorial."

Observation. Reusability is discussed not only in terms of reusing code, but also reusing different elements around

the whole process of developing software. For example, developers ask regarding the reuse of images. As images tend

to be of large sizes, they seek options to avoid having to upload the same image multiple times to their server as a way

of decreasing memory load and increasing performance. For example, QID: 9334780 raised the below concern:

``[...] There has to be some way to reuse an image without reuploading it for every single post I need to use it on.

I'm nauseous at the thought of 54 instances of the same image being present on my server. [...]"

5. Related Work

As Stack Overflow sees growth in its user base and importance in the Software Engineering and related areas

community, researchers started to perform studies gathering information from this site. Some of these works study the

utility of Stack Overflow as a Q&A site to offer support to developers and discuss the shift of developers from other

discussion forums to it [10,23]. Other studies have focused on the functionalities provided by Stack Overflow and

general aspects of the site to provide more insights regarding the community. Previous studies have focused on

analyzing specific topics using Stack Overflow for several domains such as machine learning, code smell, security,

mobile application, and code reuse [5]. Software reusability has been a topic of interest since 1970s, and because of

that, a large number of literatures that discussed it is available. This section, although not accounting for all available

work, does its best in presenting multiple papers from the different ways reusability is discussed. Previous work

discussed general aspects of reusability, identifying challenges, topics, issues and principles [2,4,8,12,15,18,24,25].

AlOmar et al. [4] studied how developers refactor their code to improve its reuse by analyzing the impact of reusability

refactorings on the state-of-the-art reusability metrics. Ahmaro et al. [2] conducted a systematic literature review to

identify the definition, approaches, benefits, reusability levels, factors, and adaption of software reusability. The

authors found that the concept of software reusability comprised of 11 approaches, namely, design patterns,

component-based development, application frameworks, legacy system wrapping, service-oriented systems,

application product lines, COTS integration, program libraries, program generators, aspect-oriented software

development and configurable vertical applications. A study is reported on the relationship of complexity and reuse

design principles is reported by Anguswamy and Frakes [8] Their findings show that the higher the complexity the

lower the ease of reuse. Lubars et al. [15] contrasted code reusability in the large versus code reusability in small with

regards to several aspects, including, size, complexity, application, and problems associated with locating and reusing

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 10

the code. The author highlighted that code reusability in the small has had limited impact because of its strongly self-

centered orientation, whereas code reusability in the large has had limited impact because of its high degree of

difficulty in finding the reusable components. In a similar context, Mockus [18] performed large-scale code reuse

study in open-source software and found that more than 50% of the files were used in more than one project. Yin and

Lee [24] conducted a survey to examine the characteristics of software reusability from the points of view of software

engineering as well as knowledge engineering. Younoussi and Roudies [25] presented a systematic literature review

on software reusability. They pointed out that few studies examined barriers of reusability, and organizations need to

adapt software reusability approaches. Reusability and code reuse are also discussed in relation to specific topics

[1,6,11,14,16,19,20, 22]. Lotter et al. [14] explored code reuse between Stack Overflow and Java open-source systems

in order to understand how the practice of reusing code could affect future software maintenance and the correct use

of license. Their findings show that there is up to 3.3 % code reuse within Stack Overflow, while 1.0 % of Stack

Overflow code is reused in Java projects. Patrick [19] investigated reusability metrics with Q&A forum data. The

author proposed an approach (LANLAN), using word embeddings and machine learning, to classify Q&A forum posts

into support requests and problem reports, as well as reveal information in relation to software reusability and explore

potential reusability metrics. In another context, Abdalkareem et al. [1] performed an exploratory study on 22 Android

apps to explore how much, why, when, and who reuses code. They found that 1.3 % of the Apps were constructed

from Stack Overflow posts, and discovered that mid-aged and older apps reuse Stack Overflow code later in their

lifetime. An et al. [6] also explored Android apps and found that 15.5 % of the apps contained exact code clones, and

60 out of 62 apps, had potential license violations.

6. Conclusion

In this paper, we presented insights regarding how developers discuss software reuse by analyzing Stack Overflow.

These findings can be used to guide future research and to assess the relevancy of software reuse nowadays. Our

findings show that software reuse is a decreasing trend in Stack Overflow which might indicate that developers have

widely adopted this practice and thus few questions regarding it emerge as it is well grasped by the community. On

the other hand, they might indicate that, since software reuse is so deeply embedded in achieving good quality software

and is often taught as an essential quality attribute, it has spread to a wide variety of topics and thus the questions are

not posted solely as reusability or code reuse issues. Additionally, our findings show that ‘visual studio’ is the top

occurring bigrams for question posts, and there are frequent design patterns utilized by developers for the purpose of

reuse. Our study opens the door for software reuse researchers to further understand the software reuse challenges. In

the future, we plan to examine developers' discussion from other forums to draw more generalizable conclusions. We

also plan to extend our work to consider reuse in specific contexts.

References

[1] Rabe Abdalkareem, Emad Shihab, and Juergen Rilling. 2017. On code reuse from stackoverflow: An exploratory

study on android apps. Information and Software Technology 88 (2017), 148–158.

[2] Ibraheem Ahmaro, Abdallah Abualkishik, and Mohd Yusof. 2014. Taxonomy, Definition, Approaches, Benefits,

Reusability Levels, Factors and Adaption of Software Reusability: A Review of the Research Literature. Journal of

Applied Sciences 14 (11 2014).

[3] Eman Abdullah AlOmar, Diego Barinas, Jiaqian Liu, Mohamed Wiem Mkaouer, Ali Ouni, and Christian Newman.

2020. An exploratory study on how software reuse is discussed in stack overflow. In International Conference on

Software and Software Reuse. Springer, 292–303.

[4] Eman Abdullah AlOmar, Philip T. Rodriguez, Jordan , Bowman, Tianjia Wang, Benjamin Adepoju, Kevin Lopez,

Christian D. Newman, Ali Ouni, and Mohamed Wiem Mkaouer. 2020. How Do Developers Refactor Code to Improve

Code Reusability?. In International Conference on Software and Systems Reuse. Springer.

[5] Moayad Alshangiti, Hitesh Sapkota, Pradeep Murukannaiah, Xumin Liu, and Qi Yu. 2019. Why is Developing

Machine Learning Applications Challenging? A Study on Stack Overflow Posts. In International Symposium on

Empirical Software Engineering and Measurement. 1–11.

PREPRIN
T

 Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian Newman, Ali Ouni 11

[6] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack overflow: A code laundering platform?.

In 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,

283–293.

[7] M. Anandarajan, C. Hill, and T. Nolan. 2018. Practical Text Analytics: Maximizing the Value of Text Data.

Springer International Publishing.

[8] Reghu Anguswamy and William B. Frakes. 2012. A Study of Reusability, Complexity, and Reuse Design

Principles. In Proceedings of the ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement (ESEM ’12). Association for Computing Machinery, New York, NY, USA, 161–164.

https://doi.org/10.1145/2372251.2372280

[9] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. 2014. What are developers talking about? an analysis of

topics and trends in stack overflow. Empirical Software Engineering 19, 3 (2014), 619–654.

[10] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2016. Moving to Stack Overflow: Best-Answer Prediction

in Legacy Developer Forums. In Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM ’16). Association for Computing Machinery, New York, NY, USA, Article

13, 10 pages. https://doi.org/10.1145/2961111.2962585

[11] Javad Ghofrani, Ehsan Kozegar, Arezoo Bozorgmehr, and Mohammad Divband Soorati. 2019. Reusability in

Artificial Neural Networks: An Empirical Study. In Proceedings of the 23rd International Systems and Software

Product Line Conference - Volume B (SPLC ’19). Association for Computing Machinery, New York, NY, USA, 122–

129. https://doi.org/10.1145/3307630.3342419

[12] Bill Jones, Steve Litvintchouk, Jerry Mungle, Herb Krasner, John Mellby, and Herb Willman. 1985. Issues in

Software Reusability. Ada Lett. IV, 5 (March 1985), 97–99. https://doi.org/10.1145/1041339.1041345

[13] Wayne C Lim. 1994. Effects of reuse on quality, productivity, and economics. IEEE software 11, 5 (1994), 23–

30.

[14] Adriaan Lotter, Sherlock A Licorish, Bastin Tony Roy Savarimuthu, and Sarah Meldrum. 2018. Code reuse in

stack overflow and popular open source java projects. In 2018 25th Australasian Software Engineering Conference

(ASWEC). IEEE, 141–150. [15] Mitchell D. Lubars. 1986. Code Reusability in the Large versus Code Reusability in

the Small. SIGSOFT Softw. Eng. Notes 11, 1 (Jan. 1986), 21–28. https://doi.org/ 10.1145/382300.382307

[15] Mitchell D. Lubars. 1986. Code Reusability in the Large versus Code Reusability in the Small. SIGSOFT Softw.

Eng. Notes 11, 1 (Jan. 1986), 21–28. https://doi.org/ 10.1145/382300.382307

[16] Soha Makady and Robert J. Walker. 2017. Test Code Reuse from OSS: Current and Future Challenges. In

Proceedings of the 3rd Africa and Middle East Conference on Software Engineering (AMECSE ’17). Association for

Computing Machinery, New York, NY, USA, 31–36. https://doi.org/10.1145/3178298.3178305

[17] Collin McMillan, Mark Grechanik, and Denys Poshyvanyk. 2012. Detecting similar software applications. In

International Conference on Software Engineering. 364–374.

[18] Audris Mockus. 2007. Large-Scale Code Reuse in Open-Source Software. In Proceedings of the First

International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS ’07). IEEE Computer

Society, USA, 7. https: //doi.org/10.1109/FLOSS.2007.10

[19] Matthew T Patrick. 2020. Exploring software reusability metrics with Q&A forum data. Journal of Systems and

Software 168 (2020), 110652.

[20] Sanjeev Patwa and Anil Kumar Malviya. 2012. Reusability Metrics and Effect of Reusability on Testing of Object

Oriented Systems. SIGSOFT Softw. Eng. Notes 37, 5 (Sept. 2012), 1–4. https://doi.org/10.1145/2347696.2347708

[21] Self-Affirmed Refactoring. 2022. Replication Package. https://docs.google.com/

spreadsheets/d/14HnwTtH7XNX-lmIrSKGf6k0j1gyAjV9RTmuwzXkFaMw/ edit#gid=598982169

[22] Arun Sharma, P. S. Grover, and Rajesh Kumar. 2009. Reusability Assessment for Software Components.

SIGSOFT Softw. Eng. Notes 34, 2 (Feb. 2009), 1–6.

[23] Megan Squire. 2015. Should We Move to Stack Overflow? Measuring the Utility of Social Media for Developer

Support. In International Conference on Software Engineering. 219–228.

[24] W. Yin, M. M. Tanik, D. Y. Y. Yun, T. J. Lee, and A. G. Dale. 1987. Software Reusability: A Survey and a

Reusability Experiment. In Proceedings of the 1987 Fall Joint Computer Conference on Exploring Technology: Today

and Tomorrow (ACM ’87). IEEE Computer Society Press, Washington, DC, USA, 65–72.

[25] S. Younoussi and Ounsa Roudies. 2015. All about software reusability: A systematic literature review. Journal

of Theoretical and Applied Information Technology 76 (01 2015), 64–75

https://doi.org/10.1145/2372251.2372280
https://doi.org/10.1145/2961111.2962585
https://doi.org/10.1145/3307630.3342419
https://doi.org/10.1145/1041339.1041345
https://doi.org/10.1145/2347696.2347708

