2404.10194v1 [cs.SE] 16 Apr 2024

arxXiv

Impostor Syndrome in Final Year Computer
Science Students: An Eye Tracking and
Biometrics Study

Alyssia Chen!0009-0002-5684-8601] " Ciar0] Wong, Katy Tarrit, and Anthony
Perumal0000—0003—2585—657X]

University of Hawai'i at Manoa
Honolulu, Hawai'i, USA
abc80hawaii.edu, carolw8@hawaii.edu, katytm7@hawaii.edu,
peruma@hawaii.edu

Abstract. Imposter syndrome is a psychological phenomenon that af-
fects individuals who doubt their skills and abilities, despite possessing
the necessary competencies. This can lead to a lack of confidence and
poor performance. While research has explored the impacts of imposter
syndrome on students and professionals in various fields, there is limited
knowledge on how it affects code comprehension in software engineering.
In this exploratory study, we investigate the prevalence of imposter syn-
drome among final-year undergraduate computer science students and its
effects on their code comprehension cognition using an eye tracker and
heart rate monitor. Key findings demonstrate that students identifying
as male exhibit lower imposter syndrome levels when analyzing code, and
higher imposter syndrome is associated with increased time reviewing a
code snippet and a lower likelihood of solving it correctly. This study
provides initial data on this topic and establishes a foundation for fur-
ther research to support student academic success and improve developer
productivity and mental well-being.

Keywords: Cognitive Load and Performance - Eye Tracking - Biomet-
rics - Heart Rate - Impostor Syndrome - Code Comprehension - Program
Comprehension - Computer Science - Undergraduate Students

1 Introduction

Impostor syndrome, also known as impostor phenomenon, fraud syndrome, per-
ceived fraudulence, or impostor experience, is a psychological phenomenon char-
acterized by persistent self-doubt of intellect, skills, or accomplishments and
feelings of fraudulence or inadequacy despite evidence of one’s competence and
accomplishments [5,6]. It is thought to affect high-achieving individuals across
various domains, including higher education and high-skill professions [4, 19].
Although there have been studies examining how women and minority groups
cope with imposter syndrome [10], and how other variables are correlated such as



2 A. Chen et al.

self-esteem [11], and self-efficacy [14], there is limited research on the connection
between impostor syndrome and undergraduate computer science students.

As undergraduate students progress through their computer science degree,
they not only acquire new skills but also refine existing ones, ultimately becoming
proficient in designing and implementing software systems. By the time they
reach the end of their academic journey, these students possess the qualifications
necessary to begin their careers in the tech industry. It is natural to assume that
at this stage, these students are confident in their skills and feel well-prepared for
professional success. However, previous research indicates that students enrolled
in STEM programs, including those related to computer science, often experience
feelings of inadequacy, potentially impacting their confidence in their skills [15].
As such, this study aims to examine the prevalence and relationship of impostor
syndrome with code comprehension performance in fourth-year computer science
students through an augmented cognition approach.

1.1 Goal & Research Questions

Code comprehension is an essential activity in software development and main-
tenance. Source code conveys the system’s behavior, through identifier names
[13], which developers rely on to understand the code they are working on to
fix defects or incorporate feature changes [21]. As computer science students
prepare to enter the workforce, feelings of self-doubt and insecurity associated
with impostor syndrome can undermine their ability to comprehend codebases,
thereby negatively impacting their confidence and job performance. Therefore,
this study aims to understand how impostor syndrome impacts code compre-
hension. We envision our study laying the foundation for future research in this
area while also providing initial insights to improve computer science education
and support students as they transition to professional roles. To this extent, we
aim to answer the following research questions (RQs):

RQ 1: To what extent are final-year undergraduate computer science
students confident in their program comprehension skills? This research
question intends to examine the level of impostor syndrome exhibited by com-
puter science students who are about to graduate. The research question assesses
the demographic factors closely associated with impostor syndrome.

RQ 2: How does impostor syndrome affect cognitive processes involved
in comprehending code? This research question aims to better understand
cognitive processes involved in comprehending code, and how impostor syndrome
can affect these processes. This is achieved by tracking eye movements, moni-
toring heart rates, and taking other measurements, such as the confidence of
participants, time taken to complete a code question, and how often partici-
pants answered the coding question correctly.

1.2 Contribution

The main contributions from this work are as follows:



Impostor Syndrome in Final Year Computer Science Students 3

— We provide preliminary yet promising findings on the extent to which im-
postor syndrome affects the code comprehension cognition of experienced
undergraduate students.

— This study establishes groundwork for further research exploring interven-
tions against impostor syndrome.

— We make our dataset publicly accessible for replication/extension purposes.

1.3 Paper Structure

The rest of this paper is organized as follows: Section 2 presents a review of
related work on imposter syndrome in software engineering. Section 3 describes
the methodology used for this study. Section 4 provides answers to both research
questions and reports on the results of the proposed experiments. Section 5
discusses the potential threats to the validity of the study. Finally, Section 6
concludes by summarizing the findings and suggesting potential directions for
future work.

2 Related Work

In this section, we report on related work in this area. While there exist studies
that examine imposter syndrome in students and industry professionals, we limit
our focus to the literature that addresses imposter syndrome among students who
are either taking a computing course or studying a computing subject/topic, as
well as software engineering professionals.

In a survey with 200 undergraduate computer science students, Rosenstein
et al. [15] show that 57% of the surveyed students exhibited frequent feelings
of the Impostor Phenomenon. The authors also highlight that women experi-
enced these feelings more frequently (71%) compared to men (52%). Heels and
Devlin [8] examine the roles chosen by female students in a large software en-
gineering team project and report that despite strong academic backgrounds,
female students tend to opt for less technical roles than male students. The au-
thors recommend exploring how unconscious bias or imposter syndrome affects
female students. Interviews with 16 Digital Technologies teachers from primary
and secondary schools by Varoy et al. [20] show that female students experience
imposter syndrome more than male students and feel they are not making as
much progress as male students, even when they are doing better work. The
teachers note that male students tend to loudly proclaim their achievements,
while female students work more quietly and cooperatively. This led the female
students to underestimate their own abilities and progress. In a study on coding
bootcamps, Thayer and Ko [17] found that imposter syndrome can act as an in-
formal boundary to entering the software industry and persist even after gaining
experience and employment. Additionally, participants in coding bootcamps can
also experience imposter syndrome, similar to those in the software industry.

A survey by Ginter [7] of 104 software engineers shows that individuals ex-
hibiting feelings of imposter syndrome usually had insecure attachment styles,



4 A. Chen et al.

particularly anxiety and avoidance. The study also found that anxious attach-
ment styles in individuals with imposter syndrome were linked to higher levels of
depression and anxiety. In a study that surveyed 94 women employed at a global
technology company, Trinkenreich et al. [18] note that imposter syndrome was
a challenge women faced in software development teams and could lead to them
leaving the organization. In an online survey of 134 Finnish women, Hyryn-
salmi and Hyrynsalmi [9] reports that women are motivated to transition to the
software industry but encounter challenges such as a lack of career counseling,
uncertainty about the required education, and issues related to self-esteem and
imposter syndrome.

3 Study Design

In this section, we provide details about the design of this study. At a high
level, the study consisted of participants reviewing a set of code snippets and
answering questions through online questionnaires. While reading code snippets,
participants’ eye movements and heart rates were monitored. We will elaborate
on these activities below. The experiment took place in a private room without
any windows, where only the participant and one investigator (i.e., an author)
were present. A 24-inch monitor was used to display code snippets and ques-
tionnaires. The investigator used a secondary monitor, mouse, and keyboard to
manage the experiment. After the calibration stage and before starting the ex-
periment, each participant went through a trial run. This allowed to check if the
eye tracker and biometric devices were functioning adequately but also to make
sure participants understood and got familiar with the task. A couple trial code
snippets were then displayed during this process and have not been included in
the results. This study was approved by the Institutional Review Board of our
institute and all participants provided consent prior to participating. The high-
resolution images of the code snippets, survey questionnaire, and participant
data are available at: [1].

3.1 Survey Design

As part of our study, we used three types of online questionnaires - a demo-
graphic pre-questionnaire, a code snippet questionnaire, and an impostor syn-
drome post-questionnaire. To construct and host these questionnaires, we lever-
aged Qualtrics. All participants answered survey questions using the same work-
station that was connected to the eye tracker and biometrics device. Below, we
have provided a brief description of each questionnaire.

Prior to code comprehension activities and questions, participants completed
a pre-questionnaire capturing their demographics. All questions were required
and are shown in Table 1.

During the coding analysis task, participants were presented with five in-
dividual code snippets, each accompanied by one single-choice question. The
question required participants to either identify the correct output of the code



Impostor Syndrome in Final Year Computer Science Students 5

Table 1: Pre-Questionnaire capturing demographic details.

No. Question Type

1 What best describes your gender? Single-Choice
2 What best describes your ethnicity? Multi-Choice
3 What is your current academic year? Single-Choice
4 What is your primary field of study/major? Single-Choice
5 Are you a first generation college student? Single-Choice
6 Do you have an immediate family member who has worked or is working in the Single-Choice

software industry? (this includes internships)

7 How many years of experience in the software industry do you have? (this in- Single-Choice
cludes internships)

8 How many years of Java programming experience do you have? Single-Choice
9 ‘What is your preferred programming language? Single-Choice
10 Do you have a software engineering-related job lined up post-graduation? Single-Choice

11 How would you rate your overall experience with your programming education? Single-Choice

or identify the number of the line where the code was causing a logical, runtime,
or compile-time error. Participants only had five minutes to read each code snip-
pet and answer the associated question. To reduce the possibility of participants
guessing the answer, each question included an “I don’t know” option. Section 4
provides screenshots of each code snippet, along with their associated question
and multiple options for answer. Right after participants provided an answer
to the question related to a specific code snippet, they were asked to provide
feedback on the confidence-level for the answer they selected. After complet-
ing code snippets’ comprehension activities, participants were asked to fill out
a post-questionnaire to assess the extent of their imposter syndrome. For this
study, Clance IP Scale questions [5] were customized to focus only on source
code analysis and troubleshooting !. Those questions can be found in Table 2.
All participants were required to answer all questions in this questionnaire.

3.2 Code Snippets

In this study, each participant was required to review five code snippets and an-
swer their associated question. Code snippets were in the Java programming lan-
guage as it is widely used in multiple courses at the University, and all students
are familiar with this programming language. Code snippets covered concepts
such as data structures, recursion, sorting, and string analysis, which are taught
in undergraduate-level courses and are usually asked during job interviews in
industry. Table 3 provides a summary of code snippets. The code snippets and
their associated question are shown in Section 4.

! From The Impostor Phenomenon: When Success Makes You Feel Like A Fake (pp.
20-22), by P.R. Clance, 1985, Toronto: Bantam Books. Copyright 1985 by Pauline
Rose Clance. Reprinted by permission. Do not reproduce without permission from
Pauline Rose Clance, drpaulinerose@comcast.net.



A. Chen et al.

Table 2: Post-Questionnaire containing the customized Clance IP Scale questions
that focus on source code analysis and troubleshooting.

No. Question Type

1

I have often succeeded in programming tasks, even though I was afraid that I Single-Choice
would not do well before I started working on it.

2 I can give the impression that I’'m more competent in my programming skills Single-Choice
than I really am.

3 I tend to avoid programming tasks and have a sense of dread when others assess Single-Choice
my programming work.

4 When people praise me for my code analysis and troubleshooting abilities, I'm Single-Choice
afraid I won’t be able to live up to their expectations of me in the future.

5 I sometimes think my success in code analysis and troubleshooting is due to Single-Choice
external factors (i.e., environmental or people) rather than due to my skills.

6 I'm afraid people important to me may find out that I'm not as capable at Single-Choice
programming as they think I am.

7 I tend to remember the incidents in which I have not done my best in program- Single-Choice
ming more than those times I have done my best.

8 I rarely do a programming task as well as I’d like to do it. Single-Choice

9 Sometimes I feel or believe that my success in analyzing and troubleshooting Single-Choice
code has been the result of some kind of accident.

10 It’s hard for me to accept compliments or praise about my programming skills Single-Choice
or accomplishments

11 At times, I feel my success in code analysis and troubleshooting has been due to Single-Choice
some kind of luck.

12 TI'm disappointed at times in my code analysis and troubleshooting accomplish- Single-Choice
ments and think I should have accomplished much more.

13 Sometimes I’'m afraid others will discover how much code analysis and trou- Single-Choice
bleshooting knowledge or ability I really lack.

14 TI'm often afraid that I may fail at a new code analysis and troubleshooting Single-Choice
assignment or undertaking, even though I generally do well at what I attempt.

15 When I've succeeded at programming and received recognition for my accom- Single-Choice
plishments, I have doubts that I can keep repeating that success.

16 If I receive a great deal of praise and recognition for my code analysis and Single-Choice
troubleshooting accomplishments, I tend to discount the importance of what
I’ve done.

17 I often compare my code analysis and troubleshooting abilities to those around Single-Choice
me and think they may be more intelligent than I am.

18 I often worry about not succeeding with a programming task, even though others Single-Choice
around me have considerable confidence that I will do well.

19 If I’'m going to gain recognition for my code analysis and troubleshooting skills, Single-Choice
I hesitate to tell others until it is an accomplished fact.

20 I feel bad and discouraged if I’'m not "the best" or at least "very special" in code Single-Choice

analysis and troubleshooting situations that involve achievement.




Impostor Syndrome in Final Year Computer Science Students 7

Table 3: Description of the five code snippets utilized in this study.
Id Description Task

1 This code snippet involves array size manipulation within a loop that Determine the output
will cause a runtime issue. Unlike the error in the other code snippets,
participants were not explicitly informed that an error exists in the
code.

2 This is an implementation of the bubble sort algorithm. However, there Identify the number of the line
is an error in the condition used in the loop, which will lead to the list where the error occurs
being sorted incorrectly. The method’s name is called ‘bubbleSort’, so
the participant is aware of the intended behavior of the code.

3 This is a recursive function that prints a sequence of digits. There are Determine the output
no errors in the code.

4 This code snippet accepts a provided string and prints the length of Determine the output
the last word in the provided string. The names of the identifiers in
the code do not indicate the code’s behavior. There are no errors in
this code.

5 This code checks if a given string is a palindrome. The implementation Identify the number of the line
contains an error in the calculation that results in a runtime error. where the error occurs

3.3 Eye Tracker & Biometric Device

Eye movements and physiological samples such as heart rate were recorded re-
spectively using the Gazepoint GP3 HD Eye Tracker and the Biometrics device.
These devices are research-grade and are commonly used for academic as well as
medical research [2,3]. The eye tracker has a sampling rate of 150 Hz to reduce
the chance of loss of tracking and a 0.5 — 1.0 degree of visual angle accuracy. Dur-
ing the experiment, participants sat on a chair facing a computer monitor where
code snippets and surveys were presented to them. Prior to the experiment, the
camera was calibrated using the Gazepoint Control software. Participants were
asked to make saccades to nine targets presented on the screen for calibration
purposes. Those nine targets were presented at the top, at the middle and at
the bottom of the screen going from the left through the middle to the right
of the screen. The heart rate was measured using a finger sensor module. The
Gazepoint Analysis software was utilized to manage the experiment, including
starting /stopping the eye tracker and the creation of areas of interest (i.e., AOIs).

3.4 Data Preprocessing

Once data collection was completed, data for analysis was prepared using Python.
The temporal gaze point data (a single gaze point represents where a user looked
and when in milliseconds) from Gazepoint was first cleaned by removing dura-
tions of time where: (1) the code was not on the screen due to latency from
Qualtrics when displaying the survey question, (2) the time between code snip-
pets, and (3) the participant was looking away from the screen and was not
focused on the code snippet. The times for (1) and (3) were determined manu-
ally by two investigators watching the video recordings with precision up to three
decimal places. The cutoff time for (2) was automated by trimming the data up
to when the participant submitted their answer for a code snippet question.
The following aggregate measures were calculated for each participant: aver-
age heart rate, total time spent on a snippet, and most looked at AOT (specif-
ically, only AOIs containing code were analyzed for this study; answer choices



8 A. Chen et al.

below each code snippet were not considered). Duration spent in each AOI was
determined by summing the differences in time between the first instance when
a gaze point was identified to be within an AOI and the first instance when
the participant moved to a different AOI. All durations for the AOIs were then
normalized by the number of words, excluding non-alphanumeric characters (as
described in Sharafi et al.[16]).

Other calculations for the data included determining levels of imposter syn-
drome (detailed in RQ1 of Section 4) and determining the correctness of answers
(a binary true/false if the answer was correct) for each code snippet which were
determined by two investigators. Additionally, recoding of ordinal variables to be
numerical were coded starting from the number zero and non-codeable responses
were designated as NaN.

3.5 Participants

In this study, fifteen final-year undergraduate students enrolled in the Com-
puter Science program at the Information and Computer Sciences Department
of the University of Hawai‘i at Manoa were recruited. These participants were
not given any monetary compensation or extra credit for participating in the
study; participation was voluntary.

Out of the fifteen participants who took the survey, nine of them identi-
fied as male, five as female, and one as non-binary/third gender. Moreover
among the participant pool, ten identified themselves as Asian only, one as
White/Caucasian, one as Black/African American, and the remaining three par-
ticipants identified with two or more ethnicities.

In terms of Java programming experience, eight participants indicated they
had one to two years of experience, four participants mentioned they had three
to five years of experience, and three participants reported they had less than one
year of experience. Additionally, six participants had between one to two years of
industry experience, five participants had less than a year of industry experience,
two participants had three to five years of industry experience, and the remaining
two participants had no prior industry experience. Table 4 provides a breakdown
of participants’ demographics.

3.6 Pilot Study

We followed the best practice of conducting a pilot study to identify any flaws
in our methodology. For this purpose, we recruited four students to participate
in a pilot study, who were not included in the actual study. All data collected
during the pilot study were discarded after its completion. During the pilot run,
we identified certain survey questions that needed to be reworded to improve
clarity as well as code snippets that required consistent formatting. We also
made improvements to the positioning of the eye tracker and the participant’s
chair. Furthermore, the pilot study helped us construct a script/instructions to
follow when conducting the actual study.



Impostor Syndrome in Final Year Computer Science Students 9

Table 4: Demographic details of the participants in the study.
Years of Exp.

Participant Years of Exp.

ID Gender Ethnicity in Software in Java
Industry

1 Male White or Caucasian 1-2 years 1-2 years
2 Female Asian 1-2 years 1-2 years
3 Female Asian, White or Caucasian 1-2 years 3-5 years
4 Male Asian None 3-5 years
5 Male Asian >1 year 3-5 years
6 Female Asian 1-2 years 1-2 years
7 Female Asian 3-5 years 3-5 years
8 gﬁfc_lbglgigér/ Asian >1 year >1 year

9 Male Black or African American None 1-2 years
10 Male Asian 1-2 years >1 year

11 Female Asian, Native Hawaiian 1-2 years 1-2 years
12 Male Asian >1 year 1-2 years
13 Male Asian 3-5 years 1-2 years
14 Male Asian >1 year >1 year

American Indian or Alaska Native,

15 Male Asian, White or Caucasian >1 year 1-2 years
4 Results

In this section, we report the study’s results by answering our RQs.

4.1 RQ 1: To what extent are final-year undergraduate computer
science students confident in their program comprehension
skills?

Based on the Clance Imposter Phenomenon (IP) Scale  uple 5. Range of val-
[5], participants were sorted into four Imposter Phe- e associated with each
nomenon Characteristics (IPC) categories: Few IPC  1p( Jevel
for those who demonstrated few imposter syndrome
characteristics, Moderate IPC for those with moderate TPC Level Scores
characteristics, Frequent IPC, and Intense IPC, with TFew 40
each corresponding to the severity level of IP. These WModerate 41 - 60
levels correspond to how frequently and seriously IP Frequent 61 - 80
interferes with a person’s life. Tntense =30

Once participants filled out the post-questionnaire
based on a version of the Clance IP Scale adapted to the task, their score was
calculated as follows: Each question had a range of multiple-choice answers,
which were "not at all true," "rarely," "sometimes," "often," and "very true."
Each answer mapped to a numerical value from 1 to 5, respectively. These values
are then tallied to create an aggregate score for each participant and used to
classify each participant into one of the four IPC groups. The range of values
associated with each IPC category can be found in Table 5.




10 A. Chen et al.

Of the fifteen participants, three had Few IPC, five had Moderate IPC, five
had Frequent IPC, and two had Intense IPC. Of the three participants with Few
IPCs, all three identified themselves as male. In the Moderate and Frequent IPC
groups, each comprising five individuals, two participants identified themselves
as female and three as male. Amongst the two participants with Intense IPC,
one identified as female and the other one as non-binary /third gender.

A t-test to compare the IPC scores between males and females (the partic-
ipant who responded "non-binary" was omitted) found that the nine males (M
= 50.56, SD = 12.32) compared to the five females (M = 68.80, SD = 12.28)
scored significantly lower on the modified Clance IP scale, t(12) = -2.658, p =
.021. Therefore, females were associated with higher levels of the imposter phe-
nomenon, particularly in relation to source code analysis and troubleshooting.

One-way ANOVA tests were additionally conducted to compare how IPC
scores were related to software industry experience and Java experience. Find-
ings show that there is no significant difference in IPC scores so there is no
relationship between these variables (p > .05 for both).

Summary for RQ1. We found that female students had higher characteris-
tics of imposter syndrome. The number of years of experience in the software
industry or the tested programming language did not seem to correlate to the
level of characteristics of imposter syndrome.

4.2 RQ 2: How does imposter syndrome affect the cognitive
processes involved in comprehending code?

To answer this research question, we examine the eye tracking and biometrics
results of participants comprehending each code snippet in the study. Below, for
each code snippet, we discuss the average heart rate, Areas of Interest (AOI)
metrics, time spent by participants on the snippet, the percentage of correct
answers, and the extent to which participants are confident with their answers.
Additionally, Figure 1 displays all five code snippets that were included in our
study, along with their corresponding question.

AOIs are regions of a stimulus from which quantitative metrics can be derived
[16]. Each AOI contains its own set of metrics, e.g., the average time participants
took to look at a specific AOI. Each line of code, excluding those solely com-
prising of curly braces, was designated an AOI. Each stimulus had an average
of 13.4 AOIs. As mentioned in Section 3, each AOI was normalized by the num-
ber of words it contained on its line in order to allow fair comparison between
AQOIs (words were characterized as sequences of alphanumeric characters that
are separated by spaces after excluding non-alphanumeric characters).

The AOIs were then grouped into one of ten different categories, depending
on the functionality of the line of code. These categories are as follows: else state-
ment, for loop, if statement, import statement, method call, method declaration,
recursive method call, return statement, variable assignment, and variable dec-
laration. An example of a method declaration is “public static void main(String]]
args) {”, while an example of a method call is “list.add(1).”



Impostor Syndrome in Final Year Computer Science Students 11

1. What is the correct output:

1 import java.util.Arraylist;

2 public static void main(String[] args) {

3 List<Integer> list = new ArraylList<>();
4 list.add(1);

5 list.add(2);

6 list.add(3);

7 for (Integer item : list) {

8 if (item.equals(1)) {

9 list.remove(item);

10 }

11 }

12 for (int i = 0; i < list.size(); i++) {
13 int curr = list.get(i);

14 System.out.print(curr);

15 }

16 }

o Output: o Null

o Compile/Runtime error o ldon’t know
3. What is the correct output:

1 public static void emptyVase(int flowersInVase) {
2 if (flowersInVase > 0) {

3 emptyVase(flowersInVase - 1);

4 System.out.print(flowersInVase);

5 }

6 }

7

8 public static void main (String[] argos){

9 emptyVase(7);

10

o Output: o Null

o Compile/Runtime error o | don’t know

2. If there’s an error, which line number contains it?

1  static void bubbleSort(int([] arr) {
2 int n = arr.length;
3 int temp = 0;
4 for(int i = 0; i < n; i++){
5 for(int j = 1; j < i; j++){
6 if(arr[j-1] > arr[j]){
7 temp = arr(j-1];
8 arr[j-1] = arr[j];
9 arr[j] = temp;
10
11 }
12 }
13}

o Line Number: o Idon't know

o Thereis no error

4. What is the correct output:

1  public int function(String input) {
2 int length 0;
3 for (int i = input.length() - 1; i >= 0; i--) {
4 if (s.charAt(i) != ' ') {
5 length++;
6 } else {
7 if (length > 0)
8 return length;
9 1
10 }
11 return length;
12}
13
14 public static void main(String[] args) {
15 System.out.println(function(*Hello World”));
16 }
o OQutput: o Null
o Compile/Runtime error o | don’t know

5. If there’s an error, which line number contains it?

1  public boolean palindromeChecker (String str) {
2 String reversedStr "y

3 int length = str.length();

4 for (int i = (length - 1); i >=0; --i) {

5 reversedStr = reversedStr - str.charAt(i);
6 }

7 str = str.toLowerCase();

8 reversedStr = reversedStr.tolLowerCase();

9 if (str.equals(reversed_str))

10 return true;

11 } else {

12 return false;

13 }

1}

o Line Number:

o Thereis no error

o ldon’t know

Fig. 1: The five code snippets that were part of our study along with their asso-

ciated question and answer choices.



12 A. Chen et al.

Code Snippet 1 - Array Size Manipulation

100 225 100
B Correct
200 Incorrect
95 80
2 175
R g
€ B150 < 60
— =4 g
T 85 S c
a @125 I
2 0 0 2 40
5 = 100 &
o
75 75 20
70 50 ;
Few Mod. Freq. Intense Few Mod. Freq. Intense 0 Few Mod. Freq. Intense

(a) Average Heart Rate (b) Time Spent on Snippet (c) % Correctly Answered
Fig. 2: Biometrics and Other Measures Averaged per IPC Group for Snippet 1

Average heart rate and time spent was further averaged within each IPC grouping (Few, Moderate, Frequent, and
Intense IPC). The percentage of participants who scored correctly in each IPC grouping is displayed in the last
figure.

It was found that for Code Snippet 1, only one participant from the Moderate
IPC group answered the problem correctly (see Figure 2c). The lowest median
for the average heart rate occurred in the Few IPC group, whereas the highest
median average heart rate occurred in the Moderate IPC group (see Figure
2a). The amount of time participants took before submitting an answer was the
lowest for those in the Few IPC group and the highest in the Intense IPC group
(see Figure 2b).

The lines of code that participants spent the longest duration on were import
statements for Few IPC, Moderate IPC, and Frequent IPC (for each row in Table
6, the percentage was highest for these three IPC groups). Those in the Intense
IPC spent the longest duration on if statements (23.87%). For all but those in
Frequent IPC, the least amount of time was spent on method declarations.

Table 6: Duration spent on a Code Category in Snippet 1

Method Method
Call Decl

For Loop If Stmt Var Decl Multiple

Few IPC|16.18% (0.46)|18.28% (0.52) 21.29% (0.6) | 10.71% (0.3) [11.14% (0.32)| 0.47% (0.01)

Moderate TPC| 17-17% (0.8) | 12.7% (0.59) 18.25% (0.85)[11.62% (0.54)|14.51% (0.67)| 0.58% (0.03)

10.93% (0.56) 16.01% (0.82)|12.66% (0.65)|12.07% (0.62)| 0.24% (0.01)

Frequent IPC 17.76% (0.91)

Intense IPC|20.63% (1.18) 14.71% (0.84)|17.65% (1.01)| 9.67% (0.55) [11.26% (0.64)| 2.21% (0.13)

Row percentages for each IPC are shown in each cell with red highlights denoting largest percentage
and green highlights denoting smallest (ignoring the Multiple category). The duration normalized
by number of words are in parenthesis.



Impostor Syndrome in Final Year Computer Science Students 13

Code Snippet 2 - Bubble Sort

100 300 100 g g ——
B Correct
95
Incorrect
250 80
8 9
2 o
€ 85 5200 2 60
— =4 g
[} S c
o g (]
8 ® G150 O 40
3 [0
o 75 a
100 20
70
o 50
Few Mod. Freq. Intense Few Mod. Freq. Intense 0 Few Mod. Freq. Intense

(a) Average Heart Rate (b) Time Spent on Snippet (c) % Correctly Answered
Fig. 3: Biometrics and Other Measures Averaged per IPC Group for Snippet 2

Average heart rate and time spent was further averaged within each IPC grouping (Few, Moderate, Frequent, and
Intense IPC). The percentage of participants who scored correctly in each IPC grouping is displayed in the last
figure.

As shown in Figure 3, only two participants from the Frequent IPC group
answered the problem correctly. The average heart rate was the lowest in the
Moderate IPC group and Highest in the intense IPC group. Participants in the
Few IPC group spent the least amount of time and those in the Intense IPC
group spent the most.

Referring to Table 7, those from the Few IPC, Moderate IPC, and Frequent
IPC spent the least amount of time on the if statements, while those in the
Intense IPC group spent the least amount of time on variable assignments. Be-
sides the Moderate IPC group, every group spent the most time on method
declarations.

Table 7: Duration spent on a Code Category in Snippet 2

For Loop If Stmt Var Asgmt| Var Decl

14.09% 8.33% 11.82% 26.52%

Few IPCl 4 66) (0.39) (0.55) (1.24)
16.45% 13.05%
Moderate IPC (1.01) (0.8)
19.54% 10.92%
Frequent IPC (1.69) (0.95)
17.95% 13.02%
Intense IPC (1.01) (0.73)




14 A. Chen et al.

Code Snippet 3 - Recursion

105 100 e
- 200 B Correct
100 Incorrect
® 175 80
5 95
(]
c 150
€ 9 3 2 60
. < £
o
2 o 8125 S
% wloo 5 40
o 80
o a
75 75 il 20
70 1 50
Few Mod. Freq. Intense Few Mod. Freq. Intense 0 Few Mod. Freq. Intense

(a) Average Heart Rate (b) Time Spent on Snippet (c) % Correctly Answered
Fig. 4: Biometrics and Other Measures Averaged per IPC Group for Snippet 3

Average heart rate and time spent was further averaged within each IPC grouping (Few, Moderate, Frequent, and
Intense IPC). The percentage of participants who scored correctly in each IPC grouping is displayed in the last
figure.

For Code Snippet 3, all of the participants in the Few IPC group answered
the problem correctly, whereas no participants from the Intense IPC group an-
swered correctly (Figure 4). One participant from the Moderate and Frequent
IPC groups answered correctly. The lowest median average heart rate was from
the Frequent TPC group, and the highest median was from the Intense IPC
group. Participants from the Intense IPC group spent the longest amount of
time on the snippet compared to those in the Few IPC group, who spent the
shortest.

This snippet had less consistent results across the IPC groupings as can be
seen in Table 8. However, it can seen that those in the Few IPC group spent
the most time on if-statements and the least amount of time on recursive calls,
whereas those in the Intense IPC group spent most of their time on method
declarations and the least amount of time on if-statements.

Table 8: Duration spent on a Code Category in Snippet 3
Method Method Recursive

If Stmt Call Decl Call
22.73% 30.88% 15.14%
Few IPC - (0.79) (1.07) (0.52)

15.21% 14.06%

Moderate IPC|28.7% (2.39) (1.27) (1.17)

24.38%

Frequent IPC (2.13)

Intense IPC| 8.06% (0.6)




Impostor Syndrome in Final Year Computer Science Students 15

Code Snippet 4 - String Analysis

300 100
100
B Correct
95 250 80 Incorrect
[
2
2 % o
3 520 2 60
5 85 5 =
Y 8150 9
£ 80 n Y 40
3 [}
2 [
75 100 @ 20
70
Few Mod. Freq. Intense Few Mod. Freq. Intense Few Mod. Freq. Intense

(a) Average Heart Rate (b) Time Spent on Snippet (c) % Correctly Answered
Fig. 5: Biometrics and Other Measures Averaged per IPC Group for Snippet 4

Average heart rate and time spent was further averaged within each IPC grouping (Few, Moderate, Frequent, and
Intense IPC). The percentage of participants who scored correctly in each IPC grouping is displayed in the last
figure.

Referring to Figure 5, seven participants answered this question correctly,
including all three from Few IPC, three between Moderate and Frequent IPC,
and one from Intense IPC. The median average heart rate was similar between
Moderate, Frequent, and Intense IPC, but those in the Few IPC group had
the lowest average heart rate. For time spent on the snippet, participants with
Intense IPC had the longest average duration; participants with Few IPC had
the shortest average duration.

As seen in Table 9, participants with Few, Moderate, and Frequent IPC

spent the longest duration on variable assignments. For code categories with the
shortest duration, there was no consistency among the four IPC groups.

Table 9: Duration spent on a Code Category in Snippet 4

Else Stmt | For Loop If Stmt M(e:t:;;)d Mgilé?d Rse:r:";n Var Asgmt| Var Decl | Multiple
3.16% 7.95% 8.74% 9.61% 19.49% 17.82% 1.56%
Few IPC| (( 56) (0.65) (0.72) (0.79) (1.6) (1.46) TI%(0.63) | (013
11.28% 10.19% 9.96% 11.15% 11.59% 9.78% 5.76%
Moderate IPC| " g3y (1.66) (1.62) (1.81) (1.88) (1.59) 97% (188)| (.94

14.72% 9.42% 12.65% 10.71% 10.58% | 5«0

Frequent IPC| ;5\ |46% (0.72)| (" 9% (1.4) (1.97) (1.67) (l63) | 254% (04)
Intense TPC|  15:12% 7.69% 5.32% 7.72% 15.35% 3.57%
(1.52) (0.78) (0.54) (0.78) (1.55) (0.36)




16 A. Chen et al.

Code Snippet 5 - Palindrome

100 100w

B Correct
Incorrect

60
40
75 100
70
* l
65 0 Few

Few Mod. Freq. Intense Few Mod. Freq. Intense Mod. Freq. Intense

— 250

©
1=
N
1=
1=

Beats per minute
3 &
[T
[ —

Seconds
-
Z
Percentage

(a) Average Heart Rate (b) Time Spent on Snippet (c) % Correctly Answered
Fig. 6: Biometrics and Other Measures Averaged per IPC Group for Snippet 5

Average heart rate and time spent was further averaged within each IPC grouping (Few, Moderate, Frequent, and
I:ir;;t::es.e IPC). The percentage of participants who scored correctly in each IPC grouping is displayed in the last

For Code Snippet 5, eight participants answered correctly, again including
all three from Few IPC, one from Moderate IPC, and four from Frequent IPC
(See Figure 6). No participant from the intense IPC group answered correctly.
Those in the few IPC group had the lowest average heart rate, whereas those
in the intense IPC had the highest. Similar to the other snippets, participants
with Few IPC spent the least amount of time on the snippet, whereas those with
Intense IPC spent the most amount of time.

Referring to Table 10 all four IPC groupings spent the most time looking at
method declarations. Those with Few and Moderate IPC spent the least amount
of time on return statements, whereas those with Frequent and Intense IPC spent
the least amount of time on if statements.

Table 10: Duration spent on a Code Category in Snippet 5

Else Stmt | For Loop If Stmt MB‘;}::?d RS‘?;:EH Var Asgmt| Var Decl
12.38% 6.02% 7.73% 18.28%
Few IPC|5.5% (0.33) | " ('7) (0.37) 5.4% (0-33) | 47y (111)
14.16% 10.32% 11.6% 9.03% 14.81% 14.51%
Moderate IPC|  (; g7) (1.32) (1.48) (1.15) (1.89) (1.85)
10.19% 6.34% 6.34% 7.27% 8.99% 23.41%
Frequent IPC| (¢ 74) (0.46) (0.46) (0.53) (0.66) (1.71)
20.88% 3.94% 1.67% 9.97% 7.14% 16.04%
Intense IPC| (3 gg) (0.54) (0.23) (1.38) (0.99) (2.22)

Overall Analysis. When averaging time across all 5 code snippets and for
each imposter syndrome level, there appears to be a trend where the median of
the time spent increases as participants score higher on Clance IP Scale (Figure
7b). When averaging how many times participants in each IPC group answered
questions correctly across all code snippets, there was a downward trend (Fig-
ure 7c¢). To measure the extent of the relationship between these variables, we



Impostor Syndrome in Final Year Computer Science Students 17

conducted a Pearson correlation test. The Pearson correlation test yielded statis-
tically significant (i.e., p-value < 0.05) correlation coefficients of 0.52, equating
to a moderate positive correlation between IPC score and time spent on a snip-
pet and -0.52, equating to a moderate negative correlation between IPC score
and average correctness. While in Figure 7a, there appears to be a positive trend
between average heart rate and IPC, it was not statistically significant. Similarly,

while there seems to be a pattern of those with high ITPC being less confident in
their answers in 7d, no significant results were found.

N
N
o

100 - 100

Beats per minute

95

90

85

80

75

70

(a) AvgHeartRate

Few

1
[ —

Mod.

Freq.

N
o
=3

Seconds
.
G 9
o w

=
N
a

50
Intense

B

Few

Mod.

Freq.

Intense

(b) AvgTimeSpent

B Correct

Incorrect
80

60

40

Percentage

20

0 Few Mod. Freq. Intense

(c) CorrectlyAnswered

Confidence
5. Completely confident
4. Fairly confident
3. Somewhat confident
2. Slightly confident
1. Not confident at all
0. N/A (I answered 'l don't know' in the last question)

o

Percentage

100 |
80 4
60 4
40
20 4

T
Few

T T T
Moderate Frequent Intense

Imposter Characteristics

(d) Con fidenceinAllSnippets
Fig. 7: Combined Results

To gain a deeper insight into overall how participants of varying IPC scores
read code, a Pearson Correlation 2-tailed test was conducted to compare average
normalized durations for each AOI code category (e.g., else-statement, for-loop).
The test yielded a statistically significant (i.e., p-value < 0.05) correlation coeffi-
cient: 0.56 for the IPC score and Method Calls, equating to a positive moderate
correlation, and 0.52 for the IPC score and Method Declarations. This could



18 A. Chen et al.

indicate that those with higher IPC scores tend to spend more time looking at
code associated with these two categories.

Summary for RQ2. Students with higher characteristics of imposter syn-
drome were associated with spending longer on snippets and were less likely
to answer the question related to each code snippet correctly. Across all code
snippets, those with higher characteristics of imposter syndrome were more
likely to look at the Method Call and Method Declaration code categories.

5 Threats To Validity

Although our study sample size is small and limited to a single institute, it
remains valuable as an initial exploratory study providing a foundation for fur-
ther research. Furthermore, research shows that program comprehension studies
using an eye tracker have an average of 18.08 participants with a standard de-
viation of 9.90 [12]. Likewise, due to the small sample size, the small gender
and race/ethnicity distribution in our participants’ pool may not be represen-
tative of the general population. The number and type of code snippets used
in this study in order to evaluate comprehension threaten the study’s validity,
as they may not represent real-world codebases that students will encounter in
their careers. However, these code snippets represent basic programming con-
cepts that students learn when preparing for their degree and are commonly
asked in entry-level software engineering industry interviews.

The validity of our study may also be threatened by the limitations of the
Gazepoint GP3 HD Eye Tracker and Biometrics Kit. However, these are research-
grade devices that have been previously utilized in scientific publications [2, 3].
Overall, while our study has some inherent limitations as an initial investigation,
it establishes a valuable foundation for further research on this topic. Finally, as
the experiment was conducted in a controlled lab environment, it may not fully
reflect real-world software development situations and, therefore, could impact
the validity of our results. However, the controlled setting helped us focus on
the effects of imposter syndrome on code comprehension. Moreover, we followed
established guidelines to set up our eye-tracking experiment [16].

6 Conclusion & Future Work

Imposter syndrome is a psychological barrier that can negatively affect the per-
formance of students and professionals. While research on imposter syndrome in
software engineering does exist, little is known about how it affects code compre-
hension cognition. In this exploratory study, we examine the level of imposter
syndrome final-year undergraduate computer science students exhibit when com-
prehending code. We further measure the cognitive impact using an eye tracker
and heart rate monitor. Our findings show that: (1) students identifying as males
show lower levels of imposter syndrome, (2) higher levels of imposter syndrome
are associated with increased duration of time spent on a snippet and lower



Impostor Syndrome in Final Year Computer Science Students 19

chances of solving the problem correctly, and (3) those with higher imposter
syndrome levels are more likely to look at method declarations and method calls.
While limited in scope, our study establishes a foundation for further research
on imposter syndrome and its effects on core software engineering competencies.

Our future work involves working with industry professionals in a similar
study to understand how imposter syndrome affects computer science profes-
sionals in their day-to-day work, including its impact on mental health.

7 Acknowledgments

We thank students who took the time to participate in our study.

8 Data Availability Statements

The high-resolution images of the code snippets, survey questionnaires, and par-
ticipant data are available at: [1].

References

1. https://zenodo.org/doi/10.5281/zenodo. 10656486 4, 19

2. Eye-tracking technology for academic research | gazepoint. https://www.gazept.
com/academic-research/?v=7516fd43adaa 7, 18

3. Publications & citations | gazepoint. https://www.gazept.com/meet-the-team/
publications/?v=7516fd43adaa 7, 18

4. Chakraverty, D.: Faculty experiences of the impostor phenomenon in STEM fields.
CBE Life Sci Educ 21(4), ar84 (Dec 2022) 1

5. Clance, P.R.: Clance impostor phenomenon scale. Personality and Individual Dif-
ferences (1985) 1, 5, 9

6. Clance, Pauline Rose Imes, S.A.: The imposter phenomenon in high achiev-
ing women: Dynamics and therapeutic intervention. Psychotherapy: Theory, Re-
search & Practice 15(3) (1978). https://doi.org/10.1037/h0086006, https:
//doi.org/10.1037/h0086006 1

7. Ginter, A.N.: Imposter Phenomenon, Insecure Attachment Style, and Mental
Health in Software Engineers: An Examination of the Moderating Effect of Self
Esteem. Ph.D. thesis, Alliant International University (2023) 3

8. Heels, L., Devlin, M.: Investigating the role choice of female students in a software
engineering team project. In: Proceedings of the 3rd Conference on Computing
Education Practice. CEP ’19, Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3294016.3294028 3

9. Hyrynsalmi, S., Hyrynsalmi, S.: What motivates adult age women to make a
career change to the software industry? In: 2019 IEEE International Confer-
ence on Engineering, Technology and Innovation (ICE/ITMC). pp. 1-8 (2019).
https://doi.org/10.1109/ICE.2019.8792630 4

10. Maji, S.: “They Overestimate Me All the Time:” Exploring Imposter
Phenomenon among Indian Female Software Engineers. Metamorphosis: A
Journal of Management Research 20(2), 55-64 (Dec 2021). https://
doi.org/10.1177/09726225211033699, http://journals.sagepub.com/doi/10.
1177/09726225211033699 1


https://zenodo.org/doi/10.5281/zenodo.10656486
https://www.gazept.com/academic-research/?v=7516fd43adaa
https://www.gazept.com/academic-research/?v=7516fd43adaa
https://www.gazept.com/meet-the-team/publications/?v=7516fd43adaa
https://www.gazept.com/meet-the-team/publications/?v=7516fd43adaa
https://doi.org/10.1037/h0086006
https://doi.org/10.1037/h0086006
https://doi.org/10.1037/h0086006
https://doi.org/10.1037/h0086006
https://doi.org/10.1145/3294016.3294028
https://doi.org/10.1145/3294016.3294028
https://doi.org/10.1109/ICE.2019.8792630
https://doi.org/10.1109/ICE.2019.8792630
https://doi.org/10.1177/09726225211033699
https://doi.org/10.1177/09726225211033699
https://doi.org/10.1177/09726225211033699
https://doi.org/10.1177/09726225211033699
http://journals.sagepub.com/doi/10.1177/09726225211033699
http://journals.sagepub.com/doi/10.1177/09726225211033699

20

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Chen et al.

Naser, M.J., Hasan, N.E., Zainaldeen, M.H., Zaidi, A., Mohamed, Y.M.A.M.H.,
Fredericks, S.: Impostor Phenomenon and Its Relationship to Self-Esteem Among
Students at an International Medical College in the Middle East: A Cross
Sectional Study. Frontiers in Medicine 9, 850434 (Apr 2022). https://doi.
org/10.3389/fmed.2022.850434, https://www.frontiersin.org/articles/10.
3389/fmed.2022.850434/full 2

Obaidellah, U., Al Haek, M., Cheng, P.C.H.: A survey on the usage of eye-tracking
in computer programming. ACM Comput. Surv. 51(1) (jan 2018). https://doi.
org/10.1145/3145904 18

Peruma, A., Mkaouer, M.W., Decker, M.J., Newman, C.D.: An empirical inves-
tigation of how and why developers rename identifiers. In: Proceedings of the
2nd International Workshop on Refactoring. p. 26-33. IWoR 2018, Association for
Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/
3242163.3242169, https://doi.org/10.1145/3242163.3242169 2

Péakozdy, C., Askew, J., Dyer, J., Gately, P., Martin, L., Mavor, K.I., Brown,
G.R.: The imposter phenomenon and its relationship with self-efficacy, per-
fectionism and happiness in university students. Current Psychology (May
2023). https://doi.org/10.1007/s12144-023-04672-4, https://doi.org/10.
1007/s12144-023-04672-4 2

Rosenstein, A., Raghu, A., Porter, L.: Identifying the prevalence of the impostor
phenomenon among computer science students. In: Proceedings of the 51st ACM
Technical Symposium on Computer Science Education. p. 30-36. SIGCSE ’20,
Association for Computing Machinery, New York, NY, USA (2020). https://doi.
org/10.1145/3328778.3366815 2, 3

Sharafi, Z., Sharif, B., Guéhéneuc, Y.G., Begel, A., Bednarik, R., Crosby, M.: A
practical guide on conducting eye tracking studies in software engineering. Empir-
ical Software Engineering 25, 3128-3174 (2020) 8, 10, 18

Thayer, K., Ko, A.J.: Barriers faced by coding bootcamp students. In: Proceedings
of the 2017 ACM Conference on International Computing Education Research. p.
245-253. ICER ’17, Association for Computing Machinery, New York, NY, USA
(2017). https://doi.org/10.1145/3105726.3106176 3

Trinkenreich, B., Britto, R., Gerosa, M.A., Steinmacher, I.: An empirical in-
vestigation on the challenges faced by women in the software industry: a case
study. In: Proceedings of the 2022 ACM/IEEE 44th International Conference
on Software Engineering: Software Engineering in Society. p. 24-35. ICSE-SEIS
’22, Association for Computing Machinery, New York, NY, USA (2022). https:
//doi.org/10.1145/3510458.3513018 4

Trinkenreich, B., Wiese, 1., Sarma, A., Gerosa, M., Steinmacher, I.. Women’s par-
ticipation in open source software: A survey of the literature. ACM Trans. Softw.
Eng. Methodol. 31(4) (aug 2022). https://doi.org/10.1145/3510460 1

Varoy, E., Luxton-Reilly, A., Lee, K., Giacaman, N.: Understanding the gender gap
in digital technologies education. In: Proceedings of the 25th Australasian Comput-
ing Education Conference. p. 69-76. ACE 23, Association for Computing Machin-
ery, New York, NY, USA (2023). https://doi.org/10.1145/3576123.3576131 3
Von Mayrhauser, A., Vans, A.M.: Program comprehension during software mainte-
nance and evolution. Computer 28(8), 44-55 (1995). https://doi.org/10.1109/
2.402076 2


https://doi.org/10.3389/fmed.2022.850434
https://doi.org/10.3389/fmed.2022.850434
https://doi.org/10.3389/fmed.2022.850434
https://doi.org/10.3389/fmed.2022.850434
https://www.frontiersin.org/articles/10.3389/fmed.2022.850434/full
https://www.frontiersin.org/articles/10.3389/fmed.2022.850434/full
https://doi.org/10.1145/3145904
https://doi.org/10.1145/3145904
https://doi.org/10.1145/3145904
https://doi.org/10.1145/3145904
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1145/3242163.3242169
https://doi.org/10.1007/s12144-023-04672-4
https://doi.org/10.1007/s12144-023-04672-4
https://doi.org/10.1007/s12144-023-04672-4
https://doi.org/10.1007/s12144-023-04672-4
https://doi.org/10.1145/3328778.3366815
https://doi.org/10.1145/3328778.3366815
https://doi.org/10.1145/3328778.3366815
https://doi.org/10.1145/3328778.3366815
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1145/3510458.3513018
https://doi.org/10.1145/3510458.3513018
https://doi.org/10.1145/3510458.3513018
https://doi.org/10.1145/3510458.3513018
https://doi.org/10.1145/3510460
https://doi.org/10.1145/3510460
https://doi.org/10.1145/3576123.3576131
https://doi.org/10.1145/3576123.3576131
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/2.402076
https://doi.org/10.1109/2.402076

	Impostor Syndrome in Final Year Computer Science Students: An Eye Tracking and Biometrics Study

