
PR
E

PR
IN

T
Exploring Large Language Models for Analyzing
and Improving Method Names in Scientific Code

Gunnar Larsen
University of Hawai‘i at Mānoa

Hawai‘i, USA
gunnarrl@hawaii.edu

Carol Wong
University of Hawai‘i at Mānoa

Hawai‘i, USA
carolw8@hawaii.edu

Anthony Peruma
University of Hawai‘i at Mānoa

Hawai‘i, USA
peruma@hawaii.edu

Abstract—Research scientists increasingly rely on implement-
ing software to support their research. While previous research
has examined the impact of identifier names on program compre-
hension in traditional programming environments, limited work
has explored this area in scientific software, especially regarding
the quality of method names in the code. The recent advances in
Large Language Models (LLMs) present new opportunities for
automating code analysis tasks, such as identifier name appraisals
and recommendations. Our study evaluates four popular LLMs
on their ability to analyze grammatical patterns and suggest
improvements for 496 method names extracted from Python-
based Jupyter Notebooks. Our findings show that the LLMs
are somewhat effective in analyzing these method names and
generally follow good naming practices, like starting method
names with verbs. However, their inconsistent handling of
domain-specific terminology and only moderate agreement with
human annotations indicate that automated suggestions require
human evaluation. This work provides foundational insights for
improving the quality of scientific code through AI automation.

Index Terms—Program Comprehension, Method Names,
Jupyter Notebooks, Grammar Patterns, Part-of-Speech

I. INTRODUCTION

As Large Language Models (LLMs) grow in popularity,
their application in software engineering is becoming increas-
ingly significant [1]. These models assist developers with
various tasks, such as code generation, debugging, code review
assistance, and documentation [2]–[5]. Additionally, through
the use of IDE plugins like GitHub Copilot1 and specialized
AI-integrated IDEs such as Cursor2 and Replit3, developers
can easily leverage LLMs to work faster and more efficiently.

Despite these advancements, there are also drawbacks asso-
ciated with using AI-powered tools in software engineering
[6]. Code quality issues, including security vulnerabilities,
potential biases in the generated code, and hallucinations,
lead to developers losing trust in AI-generated code, as they
often need to double-check and correct the output [7], [8].
Additionally, crafting prompts can be time-consuming, and
latency or interruptions may disrupt workflow. Moreover, there
are also concerns regarding the ethical and legal implications
of AI-generated content [9]–[11].

While software engineers have the necessary education
and experience to effectively utilize these LLM tools and

1https://github.com/features/copilot
2https://cursor.com/
3https://replit.com/

evaluate their output, individuals without a software engi-
neering background may inadvertently use code generated by
LLMs without fully understanding how it could affect the
overall quality of the codebase and future maintenance efforts.
This includes research scientists, who often need to develop
software programs to support their research. Typically, scien-
tists working in non-computer science research domains learn
programming through on-the-job training or from informal
resources like online articles and blogs, which can lead to
a lack of understanding regarding the principles of writing
readable and maintainable code [12].

Prior research into the code typically written by research
scientists reveals issues such as PEP8 violations, stylistic
inconsistencies, high coupling, and significant challenges in
reproducibility [13]–[16]. Furthermore, Wong et al. [17] exam-
ined the method names in such code and found many instances
where names deviated from standard naming practices, such
as starting with a verb. Instead, these names tend to be based
on the output of the methods, rather than their actions. The
authors also noted the presence of ambiguous single-term
names, unconventional word order, and methods that include
abbreviations or acronyms, many of which require domain-
specific knowledge for interpretation. They also observed
instances where the names incorrectly ended with a verb.

A. Goal and Research Questions

In this context, our exploratory study aims to investigate
the ability of LLMs to evaluate method names in scientific
code and to generate alternative naming suggestions when
appropriate. The naming conventions observed in the code
written by research scientists frequently diverge from stan-
dard practices, leading to reduced clarity and maintainabil-
ity. Method names, in particular, play an important part in
conveying the purpose and functionality of code, and poorly
chosen names can result in confusion and hinder collaboration
among researchers [18]–[20]. By utilizing the capabilities of
LLMs, we seek to determine how effectively these models can
understand context and propose method names that adhere
to established conventions and best practices. We envision
our findings advancing the knowledge of identifier naming in
scientific code and the effectiveness and drawbacks of LLMs
in generating improved naming suggestions. Additionally, it
offers practical guidelines for non-computer scientists when

https://github.com/features/copilot
https://cursor.com/
https://replit.com/


PR
E

PR
IN

T
using LLMs for code generation and evaluation. We address
the following research questions (RQs):

RQ1: How effectively can LLMs identify and classify
grammatical patterns in method names? Method names
in scientific code typically do not follow standard software
engineering naming conventions. This RQ aims to explore the
effectiveness of LLMs in generating part-of-speech tags for
these method names. This initial understanding will help us
determine the reliability of LLMs as tools for analyzing the
grammatical structure of method names in scientific code.

RQ2: To what extent are LLM-suggested method name
corrections aligned with software engineering best prac-
tices? In this RQ, we aim to evaluate the quality and appro-
priateness of method name improvements suggested by LLMs
for scientific code, including how they handle abbreviations
and acronyms contained in the name. Insights gained from
this exploration will assist us in developing better tools and
techniques to improve code quality in notebook environments.

B. Contributions

The main contributions of this work are:
• Evaluation of LLMs: Assesses the ability of LLMs to

analyze grammatical patterns in method names within
scientific programs and suggest corrections aligned with
software engineering best practices.

• Advancing Code Quality: Contributes to improving the
quality of scientific programs, thereby enhancing their
maintainability and reproducibility.

II. METHODOLOGY

In this section, we describe in detail our approach to
answering our RQs. Figure 1 depicts an overview of the key
activities in our methodology, which we elaborate below.

A. Source Dataset

In this study, we utilize the dataset made available by Wong
et al. [17]. In their study, the authors manually reviewed 691
method names extracted from 384 Jupyter Notebooks, which
were randomly sampled from a larger dataset of 847,881
Python-based Jupyter Notebooks, which were collected from
public GitHub repositories by Grotov et al. [14]. The au-
thors (i.e., Wong et al.) annotated these method names for
grammatical patterns, using part-of-speech tags, defined by
Newman et al. [21], specifically tailored for analyzing source
code identifiers. This dataset is the only one that has part-of-
speech annotated method names from scientific code.

B. Part-of-Speech Tags

These part-of-speech tags utilized by Wong et al. include
nouns (N), noun modifiers (NM) for adjectives and noun-
adjuncts, verbs (V), verb modifiers (VM), prepositions (P),
determiners (DT), conjunctions (CJ), pronouns (PR), digits
(D), and preambles (PRE). Details about the tags are available
in the study by Newman et al. [21] and online at [22].

C. Method Extraction

For each of the 691 method names in the source dataset, we
extracted the complete method definition from its respective
notebook file. We utilized the nbformat Python package to
parse the notebook and extract the method code.

D. Large Language Model Analysis

For this study, we utilized four popular Large Language
Models (LLMs). Each of these LLMs has been shown by
its respective authors to demonstrate significant capabilities in
understanding and generating code-related tasks. The models
we selected are:
• Google Gemini 2.0 Flash4

• Alibaba Qwen 2.5 Coder 32B5

• Meta LLaMa 3.3 70B6

• DeepSeek-R1 70B7

We built custom scripts to interact with the Gemini model
using Google’s Gemini API. For the remaining three models,
we utilized the Ollama8 platform to run the LLMs locally.

E. Prompt Design

The effectiveness of LLM-based analysis depends on care-
fully crafted prompts, as their phrasing, structure, and context
influence output quality and consistency [23]. Hence, we eval-
uated multiple variations of the prompt to determine the most
effective. Our evaluation included prompts with different roles,
levels of detail, various examples, and alternative formatting
approaches. We found that prompts with clear structural guide-
lines and explicit output formatting requirements produced the
most consistent results across different LLM architectures. Our
final prompt design includes the following elements:
• A role specification for the LLM as “an expert software

engineer specializing in Python programming”
• A detailed explanation of the part-of-speech tagging pro-

cess, including a comprehensive table of tags (N, V, NM,
VM, P, etc.) with examples

• Instructions for splitting method names into individual
terms based on camelCase, PascalCase, or snake case

• Guidelines for handling acronyms, abbreviations, and nu-
merical elements in method names

• Explicit directions for evaluating the quality of method
names against software engineering best practices

• A structured JSON response format with fields for:
– Current method name and its grammar pattern
– Corrected method name (if needed)
– Corrected grammar pattern (if needed)

• An example of the output structure
• The code associated with the method
We observed the need to provide explicit instructions re-

garding the part-of-speech tagging, as without such explicit

4https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
5https://ollama.com/library/qwen2.5-coder
6https://ollama.com/library/llama3.3
7https://ollama.com/library/deepseek-r1
8https://ollama.com/

https://ai.google.dev/gemini-api/docs/models#gemini-2.0-flash
https://ollama.com/library/qwen2.5-coder
https://ollama.com/library/llama3.3
https://ollama.com/library/deepseek-r1
https://ollama.com/


PR
E

PR
IN

T
Extract Method
Definition 

Source Jupyter
Notebooks

Research Question Analysis

Method Name
Correction Analysis

Grammar Pattern
Analysis 

Large Language Models

Fig. 1. KEY ACTIVITIES IN OUR METHODOLOGY.

TABLE I
ACCURACY AND AGREEMENT RATES BETWEEN EACH LLM AND THE

HUMAN ANNOTATION (GROUND TRUTH)

Model Accuracy Cohen’s Kappa

Gemini 2.0 Flash 0.611 0.577

Qwen 2.5 Coder 32B 0.454 0.412

DeepSeek-R1 70B 0.393 0.344

LLaMa 3.3 70B 0.357 0.295

guidance, the LLMs default to standard natural language part-
of-speech tags, which are inadequate for analyzing identifier
names in code. This approach ensures that the LLMs use a
consistent tagging scheme and facilitates ease of comparison
against the human-annotated tags in the source dataset.

F. Research Question Analysis

The output generated from the LLMs was saved to a SQLite
database in a table whose fields correspond to the output
structure specified in the prompt.

For our analysis, we employed standard statistical measures
to effectively summarize the data. We also wrote SQL queries
and custom code to retrieve information from the database
to address our RQs. Additionally, we manually searched the
database to include representative examples that would en-
hance our analysis. To evaluate the level of agreement among
the LLMs and between the original annotations, we utilized
Fleiss’ Kappa and Cohen’s Kappa. Both of these measures
assess inter-rater reliability, but they differ in their application:
Cohen’s Kappa is appropriate for situations involving two
raters, while Fleiss’ Kappa is suitable for three or more raters.
Artifacts for this study are available at [24].

III. RESULTS

In this section, we answer our RQs by analyzing the output
of the LLMs. It is important to note that although the prompts
used for the LLMs were identical, not all models produced
the desired output. In some cases, certain LLMs either did
not adhere to the instructions and instead returned lengthy

TABLE II
THE TOP THREE MOST COMMON GRAMMAR PATTERN

MISCLASSIFICATIONS FOR EACH LLM.

Human Annoated

Grammar Pattern

Model Generated

Grammar Pattern
Count Percentage

Model: Gemini 2.0 Flash

N PRE 16 8.29%

VM V 11 5.70%

V,NPL V,N 9 4.66%

Model: Qwen 2.5 Coder 32B

V,N V,NM 42 15.50%

V,NPL V,NM 15 5.54%

V N 13 4.80%

Model: DeepSeek-R1 70B

V,NPL V,N 18 5.64%

N V 13 4.08%

NM,N N,N 13 4.08%

Model: LLaMa 3.3 70B

N V 15 4.98%

V,N V 14 4.65%

V,N V,NM 12 3.99%

paragraphs or followed the required output format but failed
to provide values for all fields in the JSON structure. Addi-
tionally, there were also instances of the model hallucinating,
generating output for methods that did not exist. Out of a total
of 691 input methods, the Gemini model successfully returned
complete outputs for 690 of them. In comparison, the LLaMA
model produced details for 615 methods, the Qwen model
for 595 methods, and DeepSeek for 526 methods. However,
as mentioned above, some outputs from these models are
hallucinations. After examining the outputs from each of the
LLMs, we identified a total of 496 methods that contained
valid outputs common to all four models. This number reflects
our decision to exclude methods that were only returned by



PR
E

PR
IN

T
some models, ensuring consistency in the results we analyzed.
Henceforth, our analysis is based only on these 496 methods.

RQ1: How effectively can LLMs identify and classify gram-
matical patterns in method names?

This RQ examines the part-of-speech tags generated by the
LLMs for the method names and compares these tags against
the human-annotated tags in the original dataset. First, when
assessing the level of agreement among the LLMs, we find
that all four models agree in 18.8% of cases, resulting in a
Fleiss’ Kappa of 0.333. This indicates a fair level of agreement
among the models. However, comparing the output solely
across LLMs serves only to shed light on AI behavior, not to
validate correctness. Therefore, we also compared the output
of each LLM against the human-annotated tags in the original
dataset. In Table I, we show the accuracy and agreement of the
part-of-speech tags for each of the four LLMs. Even though
Gemini had the highest accuracy, 61.1%, the Cohen’s Kappa
of 0.577 is indicative of a moderate agreement.

Our next analysis focuses on the common grammar patterns
that each LLM misclassified. Table II shows the top three most
common grammar patterns each LLM misclassified. From this,
we observe that Gemini struggles with single-term names
that are acronyms. The N → PRE misclassification affecting
methods having names like “SVD” and “MSE” reveals that
Gemini incorrectly categorizes mathematical and technical
abbreviations as preambles.

Qwen tends to misclassify nouns as noun modifiers
(V,N→V,NM and V,NPL→V,NM). Unlike a noun, a noun
modifier adds specificity to the noun by providing more detail
and clarifying the particular type of object to which the action
relates. Hence, it is interesting that even though method names
like “load image” are composed of only a verb and a noun,
Qwen often classifies the noun as a noun modifier. This
misclassification occurs despite the fact that in this context,
“image” acts as a direct object of “load,” not a modifier.

The analysis also reveals challenges with words that can
function as both nouns and verbs. Qwen classifies single-
word method names “clean” and “animate” as nouns, while
the human-annotated dataset has them listed as nouns. In
contrast, Deepseek and LLaMA incorrectly classify certain
human-annotated nouns, such as “sigmoid” and “answer”, as
verbs. These dual-function words require understanding of
both method naming conventions and contextual behavior, not
just linguistic rules, for accurate classification.

An interesting observation regarding certain models is how
they classify plural words. For example, human annotations
for method names like “build data” and “process features”
categorize them as V,NPL, meaning a verb followed by a plural
noun. However, models such as Gemini, Qwen, and Deepseek
classify the plural term as singular (i.e., V,N).

Summary. RQ1 examines how effectively LLMs classify
grammatical patterns in method names from scientific code.
Among the four models, Gemini achieved the highest accuracy
and moderate agreement with human annotations. LLaMa

TABLE III
NUMBER OF TIMES EACH LLM RETAINED THE ORIGINAL METHOD NAME.

Model
Preserved Original Name

Count Percentage

Gemini 2.0 Flash 324 65.3%

Qwen 2.5 Coder 32B 160 32.3%

DeepSeek-R1 70B 136 27.4%

LLaMa 3.3 70B 35 7.1%

TABLE IV
LENGTH OF METHOD NAMES GENERATED BY THE LLMS.

THE VALUES WITHIN PARENTHESES REPRESENT THE GROWTH RELATIVE
TO THE ORIGINAL METHOD NAME.

Model
Average

Words Per Method Name

Average

Characters Per Method Name

Original

Method

Corrected

Method

Original

Method

Corrected

Method

Gemini 2.0 Flash 1.78 2.77 (+55.62%) 10.86 17.97 (+65.47%)

DeepSeek-R1 70B 1.94 2.96 (+52.58%) 11.29 19.96 (+76.79%)

Qwen 2.5 Coder 32B 1.87 2.99 (+59.89%) 10.88 19.77 (+81.71%)

LLaMa 3.3 70B 1.98 3.29 (+66.16%) 11.71 22.62 (+93.17%)

has the lowest accuracy and agreement. Common misclassi-
fications included acronyms, plural nouns, and dual-function
words, highlighting challenges with contextual and domain-
specific details.

RQ2: To what extent are LLM-suggested method name cor-
rections aligned with software engineering best practices?

While the prior RQ focused on the grammar patterns
generated by LLMs for the original practitioner-crafted method
name, this RQ focuses on the extent to which LLMs evaluate
the quality of the original name and suggest a correction.

First, we analyze the agreement between the four LLMs
by comparing the corrected names provided by each LLM.
We observe that only 78 out of 496 corrected names (about
15.7%) are identical across all four LLMs. Further, the level
of agreement among the four LLMs is measured by a Fleiss’
Kappa value of 0.389, indicating a fair level of consensus.

Next, we examined the extent to which each LLM agreed
with the original method name (i.e., the suggested corrected
name was the same as the original name). As shown in Table
III, Gemini showed the strongest preference for keeping origi-
nal names unchanged, preserving about two-thirds (65.3%) of
the names. In contrast, LLaMA was the most aggressive in
proposing alternative names, with approximately 93% of its
suggestions being different from the original.

Moving on, we next examine the structural characteristics
of the suggested method names. We perform this analysis
exclusively on the method names that were changed by each



PR
E

PR
IN

T
LLM. Table IV shows the findings of this analysis. Since
the number of method names corrected varied across each
LLM, the values in the column labeled Original Method
represent the average counts for only the original method
names specific to each LLM. We observe that all four models
tend to lengthen the method name. LLaMA produced the
longest method names, with approximately 66% more words
and 93% more characters than the original names on average.
In contrast, Gemini shows the least growth of the corrected
method name. Deepseek and Qwen contribute method names
that are typically around 20 characters long and comprise
approximately three words for their suggested renames.

Our next set of analyses explored the semantic characteris-
tics of the names. We first start by investigating the common
terms that each LLM adds to and removes from the original
name when it suggests an alternate name. Table V shows the
top two frequently added and removed terms for each LLM9.
Two observations we notice in all four LLMs are as follows:
(1) the term “calculate” dominates all four LLMs as the most
added term, highlighting the unique characteristic of scientific
code, and (2) the expansion of the acronym “mse”. Another
interesting observation is the replacement of the term “get”
with a synonym like “extract” and “retrieve” by most LLMs.

Examining the part-of-speech tags generated by the LLMs
for the corrected names, we found that the majority of gram-
mar patterns produced by all four LLMs begin with a verb.
Specifically, 97.98% of the grammar patterns from LLaMA,
96.37% from Qwen, 95.56% from DeepSeek, and 85.69%
from Gemini start with a verb. In contrast, approximately 55%
of the patterns in the original dataset begin with a verb.

Further, as part of the corrected name grammar pattern
analysis, we observed a discrepancy between the number of
words in a method name and the number of part-of-speech
tags in the grammar pattern. From Table VI, we observe that
Gemini shows the highest consistency in matching part-of-
speech tags to words, with a rate of 95.77%. In contrast,
LLaMA has the lowest matching rate (69.15%) and generates
fewer part-of-speech tags than there are words in the method
name. For instance, LLaMA suggests renaming “pcr noise”
to “apply pcr noise model,” which contains four words, but it
generates only two tags (V,NM) for the corrected name. On the
other hand, DeepSeek tends to assign more part-of-speech tags
than words. For example, while the model suggests renaming
“update” to “train model,” the new name is matched with a
grammar pattern of three tags (V,N,N) rather than two.

Our final analysis examines how the LLMs handle method
names containing abbreviations/acronyms. The original dataset
of 496 method names contains 140 instances of such terms.

First, we examine how many of these 140 methods were
not corrected (i.e., the LLM did not propose an alternative).
We observe that Gemini preserved the original name in
53 instances (approximately 37.9%). In comparison, Qwen,
DeepSeek, and LLaMA preserved the original name 8 times
(5.7%), 6 times (4.3%), and 1 time (0.7%), respectively.

9Due to space constraints, we limited the table to two terms for each action.

TABLE V
THE TWO TERMS MOST FREQUENTLY ADDED AND REMOVED BY EACH

LLM IN THE CORRECTED METHOD NAME.

Action Term Count Example

Model: Gemini 2.0 Flash

Added calculate 51 variance → calculate variance

Added image 12 pdiguide imgRead → read pdiguide image

Removed mse 8 MSE → calculate mean squared error

Removed im 7 im convert → convert image

Model: Qwen 2.5 Coder 32B

Added calculate 86 square → calculate square

Added get 21 author url → get author url

Removed mse 15 MSE → calculate mean squared error

Removed get 12 get params → initialize parameters

Model: DeepSeek-R1 70B

Added calculate 55 pcr noise → calculate pcr noise

Added compute 20 hash → compute hash

Removed get 21 get dataset → retrieve dataset

Removed mse 15 MSE → mean squared error

Model: LLaMa 3.3 70B

Added calculate 91 square → calculate square

Added perform 27 preprocess → perform preprocessing

Removed get 37 get year → extract year from name

Removed mse 15 MSE → calculate mean squared error

TABLE VI
CONSISTENCY OF WORD COUNTS AND PART-OF-SPEECH TAGS FROM

LLMS FOR THE CORRECTED METHOD NAME.

Model
Equal

Tags and Words

More

Tags than Words

Fewer

Tags than Words

Gemini 2.0 Flash 475 (95.77%) 19 (3.83%) 2 (0.40%)

DeepSeek-R1 70B 384 (77.42%) 30 (6.05%) 82 (16.53%)

Qwen 2.5 Coder 32B 442 (89.11%) 22 (4.44%) 32 (6.45%)

LLaMa 3.3 70B 343 (69.15%) 20 (4.03%) 133 (26.81%)

TABLE VII
COUNT OF ABBREVIATIONS AND ACRONYMS EXPANDED BY EACH LLM.

Model
Abbreviations &

Acronyms

Not Expanded Expanded

Gemini 2.0 Flash 88 (62.86%) 52 (37.14%)

Qwen 2.5 Coder 32B 58 (41.43%) 82 (58.57%)

DeepSeek-R1 70B 42 (30%) 98 (70%)

LLaMa 3.3 70B 38 (27.14%) 102 (72.86%)



PR
E

PR
IN

T
Next, from Table VII, we note that Gemini is more con-

servative and expands only about 37.14% of the abbreviations
and acronyms. In contrast, LLaMA is more aggressive, ex-
panding 72.86%. Some observations we notice are that certain
computing abbreviations, such as ‘CSV’, ‘JSON’, ‘ASCII’,
and ‘PNG’ are not expanded by any of the LLMs. Simi-
larly, we find that some domain-specific abbreviations, like
‘PCR’ (Polymerase Chain Reaction) ‘FES’ (Filter Encoding
Standard), and ‘WISDM’ (Wireless Sensor Data Mining), are
not expanded by all four LLMs. In contrast, abbreviations
like ‘MSE’ (Mean Squared Error) and acronyms like ‘ACC’
(Accuracy) are expanded by most of the LLMs.
Summary. RQ2 assesses LLMs’ ability to suggest method
name corrections that adhere to best practices. Gemini retained
65.3% of original names, while LLaMA changed 93%. Cor-
rected names were longer and often started with verbs, with
common additions included terms like “calculate.” LLaMA
is the most aggressive among the LLMs in expanding ab-
breviations and acronyms. However, computing and domain-
specific abbreviations, such as “CSV” and “PCR” were often
not expanded in the suggested name.

IV. DISCUSSION

As an exploratory study, our findings show that while LLMs
can provide valuable guidance for improving scientific code
readability, their suggestions require careful human evaluation,
particularly in domain-specific contexts.

A clear observation from our RQ results is the unique
behavior of the individual LLMs in our evaluation. Specif-
ically, there are significant differences in how Gemini and
LLaMA generate grammatical patterns and assess the quality
of names. This shows that different architectural approaches
and training methodologies can lead to fundamentally different
code analysis philosophies. Moreover, the challenges with the
LLMs in handling domain-specific terminology show that the
assumptions built into current LLM architectures regarding
code quality may not align with the needs of scientific com-
puting. This highlights the need for explicit domain-aware
training approaches instead of relying on general-purpose
language models for specialized code analysis tasks.

The results we achieved are a result of the prompt we
created, which was developed through multiple iterations and
an in-depth understanding of software engineering principles
and the behavior patterns of LLMs. It is important to ac-
knowledge that research scientists who lack a background
in software engineering are unlikely to replicate our level of
success. While they might apply basic prompts like “improve
this method name” or “make this code better,” these simplistic
approaches may yield poorer results than our findings. This
potential gap between our controlled experimental conditions
and real-world usage scenarios is a concern. Hence, there is
a need to make LLMs more accessible and effective for users
across varying levels of technical expertise.
Key Implications For SE Research Community. Our work
advances the field of AI for SE by providing an initial
evaluation of LLMs for improving program comprehension

in scientific code. Our early results highlight several opportu-
nities for further research in this area, such as domain-specific
fine-tuning approaches for LLMs tailored to specific scientific
disciplines and conducting more human-centric studies to
understand how research scientists utilize LLMs.
Key Implications For Research Scientists. While non-
computer science researchers may be inclined to rely entirely
on LLMs to write code that supports their research, our
findings provide guidance on when to trust LLM suggestions
and when human judgment is essential. Thus, helping them
make more informed decisions regarding adopting AI coding
assistants. Scientists can utilize these insights to better evaluate
code improvements generated by LLMs, especially as domain-
specific terminology often needs human review for accuracy
Key Implications For Educators. When teaching program-
ming concepts to students from non-traditional computer
science backgrounds, educators should emphasize both the
advantages and limitations of using AI tools for software en-
gineering. Helping students understand when and why LLMs
may fail in code analysis tasks is essential for developing their
critical evaluation skills in AI-assisted development.

V. THREATS TO VALIDITY

The prompt’s quality can significantly impact LLM output,
potentially affecting our findings. Additionally, since we ap-
plied the same prompt across all four LLMs, there is a risk
that this prompt may not have been ideal for every model.

As LLMs continue to evolve, the results observed in our
study may not reflect the capabilities of future models. Our
findings should therefore be considered as a snapshot of
current LLM capabilities rather than an assessment of their
potential for code analysis tasks. Additionally, due to the
non-deterministic nature of LLM outputs, there is a threat
to reproducing our results. Furthermore, the selected LLMs
may not represent all available models, which could also limit
the applicability of our results. However, since this is an
exploratory study, our goal is to identify preliminary trends
and patterns that can guide future research.

Our dataset is limited to a subset of methods found in
Python-based Jupyter Notebooks, which restricts the gener-
alizability of our findings. We also acknowledge that method
names were analyzed in isolation, without additional context
such as class names, file names, or usage patterns. While
this simplifies the analysis and reduces prompt complexity, it
may limit the relevance or precision of the suggested names,
especially in cases where meaning is derived from surrounding
structures. Finally, we did not include human evaluation of
method name corrections generated by LLMs, limiting our as-
sessment of semantic appropriateness. Expert feedback could
enhance the evaluation’s real-world applicability.

VI. CONCLUSION & FUTURE WORK

This exploratory study examines the effectiveness of LLMs
in analyzing and improving method names in scientific code.
Our evaluation of four popular LLMs on 496 method names



PR
E

PR
IN

T
shows notable differences in LLM performance for grammati-
cal pattern recognition and method name improvements. Gem-
ini achieved the highest accuracy in recognizing grammatical
patterns, but a moderate agreement with human annotations.
For method name corrections, Gemini was conservative and
preserved most of the original names, while LLaMA made
more aggressive changes. All models showed a bias toward
names that begin with a verb, aligning with software en-
gineering practices. As an initial investigation into the use
of LLMs for improving program comprehension in scientific
code, our findings establish a foundation for future research in
this area. Our future work will include other identifier types,
such as variables, parameters, and classes, for a comprehensive
understanding of identifier quality in scientific code.

VII. ACKNOWLEDGMENTS

The technical support and advanced computing resources
from University of Hawaii Information Technology Services –
Research Cyberinfrastructure, funded in part by the National
Science Foundation CC* awards # 2201428 and # 2232862
are gratefully acknowledged. Additionally, this work was par-
tially supported by the Undergraduate Research Opportunities
Program in the Office of the Vice Provost for Research and
Scholarship at the University of Hawai‘i at Mānoa.

REFERENCES

[1] C. Ebert and P. Louridas, “Generative ai for software practitioners,”
IEEE Software, 2023. 1

[2] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” ACM Transactions on Software
Engineering and Methodology, vol. 33, p. 1–79, Nov. 2024. 1

[3] J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on
the usability of ai programming assistants: Successes and challenges,”
in Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering, ICSE ’24, (New York, NY, USA), Association
for Computing Machinery, 2024. 1

[4] J. Sauvola, S. Tarkoma, M. Klemettinen, J. Riekki, and D. Doermann,
“Future of software development with generative ai,” Automated Soft-
ware Engineering, vol. 31, Mar 2024. 1

[5] L. Belzner, T. Gabor, and M. Wirsing, Large Language Model As-
sisted Software Engineering: Prospects, Challenges, and a Case Study,
p. 355–374. Springer Nature Switzerland, Dec. 2023. 1

[6] C. Gao, X. Hu, S. Gao, X. Xia, and Z. Jin, “The current challenges of
software engineering in the era of large language models,” ACM Trans-
actions on Software Engineering and Methodology, vol. 34, p. 1–30,
May 2025. 1

[7] H. Mozannar, G. Bansal, A. Fourney, and E. Horvitz, “Reading between
the lines: Modeling user behavior and costs in ai-assisted programming,”
in Proceedings of the CHI Conference on Human Factors in Computing
Systems, CHI ’24, p. 1–16, ACM, May 2024. 1

[8] S. Lertbanjongngam, B. Chinthanet, T. Ishio, R. G. Kula, P. Leelaprute,
B. Manaskasemsak, A. Rungsawang, and K. Matsumoto, “An empirical
evaluation of competitive programming ai: A case study of alphacode,”
in 2022 IEEE 16th International Workshop on Software Clones (IWSC),
p. 10–15, IEEE, Oct. 2022. 1

[9] C. Bull and A. Kharrufa, “Generative artificial intelligence assistants in
software development education: A vision for integrating generative ar-
tificial intelligence into educational practice, not instinctively defending
against it,” IEEE Software, vol. 41, no. 2, 2024. 1

[10] D. Russo, “Navigating the complexity of generative ai adoption in
software engineering,” ACM Trans. Softw. Eng. Methodol., 2024. 1

[11] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering: Sur-
vey and open problems,” in 2023 IEEE/ACM International Conference
on Software Engineering: Future of Software Engineering (ICSE-FoSE),
pp. 31–53, 2023. 1

[12] A. Chen, C. Wong, B. Sharif, and A. Peruma, “Exploring code
comprehension in scientific programming: Preliminary insights from
research scientists,” in 2025 IEEE/ACM 33rd International Conference
on Program Comprehension (ICPC), ICPC ’25, (New York, NY, USA),
Association for Computing Machinery, 2025. 1

[13] J. Wang, L. Li, and A. Zeller, “Better code, better sharing: on the
need of analyzing jupyter notebooks,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and
Emerging Results, ICSE-NIER ’20, (New York, NY, USA), p. 53–56,
Association for Computing Machinery, 2020. 1

[14] K. Grotov, S. Titov, V. Sotnikov, Y. Golubev, and T. Bryksin, “A large-
scale comparison of Python code in Jupyter notebooks and scripts,” in
Proceedings of the 19th International Conference on Mining Software
Repositories, MSR ’22, (New York, NY, USA), p. 353–364, Association
for Computing Machinery, 2022. 1, 2

[15] K. Adams, A. Vilkomir, and M. Hills, “A Comparison of Machine
Learning Code Quality in Python Scripts and Jupyter Notebooks,” J.
Comput. Sci. Coll., vol. 39, p. 96–108, Nov. 2023. 1

[16] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A Large-Scale
Study About Quality and Reproducibility of Jupyter Notebooks,” in
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), pp. 507–517, 2019. 1

[17] C. Wong, G. Larsen, R. Huang, B. Sharif, and A. Peruma, “Method
Names in Jupyter Notebooks: An Exploratory Study,” in 2025
IEEE/ACM 33rd International Conference on Program Comprehension
(ICPC), ICPC ’25, (New York, NY, USA), Association for Computing
Machinery, 2025. 1, 2

[18] E. W. Høst and B. M. Østvold, Debugging Method Names, p. 294–317.
Springer Berlin Heidelberg, 2009. 1

[19] E. W. Host and B. M. Ostvold, “The programmer’s lexicon, volume
i: The verbs,” in Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2007), p. 193–202,
IEEE, Sept. 2007. 1

[20] R. Alsuhaibani, C. Newman, M. Decker, M. Collard, and J. Maletic, “On
the naming of methods: A survey of professional developers,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), p. 587–599, IEEE, May 2021. 1

[21] C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers,” Journal of Systems and
Software, vol. 170, p. 110740, 2020. 2

[22] SCANL, “Identifier naming structure catalogue.” https://github.com/S
CANL/identifier name structure catalogue. 2

[23] P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal, and A. Chadha,
“A systematic survey of prompt engineering in large language models:
Techniques and applications,” arXiv preprint arXiv:2402.07927, 2024.
2

[24] “Artifact package.” url = https://doi.org/10.5281/zenodo.16310985. 3

https://github.com/SCANL/identifier_name_structure_catalogue
https://github.com/SCANL/identifier_name_structure_catalogue

	Introduction
	Goal and Research Questions
	Contributions

	Methodology
	Source Dataset
	Part-of-Speech Tags
	Method Extraction
	Large Language Model Analysis
	Prompt Design
	Research Question Analysis

	Results
	Discussion
	Threats To Validity
	Conclusion & Future Work
	Acknowledgments
	References

