Identifier Name Similarities: An Exploratory Study

Carol Wong, Mai Abe, Silvia De Benedictis, Marissa Halim, Anthony Peruma
University of Hawai‘i at Manoa, Honolulu, Hawai‘i, USA
carolw8 @hawaii.edu, maiabe @hawaii.edu, silviadb@hawaii.edu, mhalim @hawaii.edu, peruma@hawaii.edu

Abstract—Identifier names, which comprise a significant por-
tion of the codebase, are the cornerstone of effective program
comprehension. However, research has shown that poorly chosen
names can significantly increase cognitive load and hinder collab-
oration. Even names that appear readable in isolation may lead to
misunderstandings in contexts when they closely resemble other
names in either structure or functionality. In this exploratory
study, we present our preliminary findings on the occurrence
of identifier name similarity in software projects through the
development of a taxonomy that categorizes different forms
of identifier name similarity. We envision our initial taxonomy
providing researchers with a platform to analyze and evaluate
the impact of identifier name similarity on code comprehension,
maintainability, and collaboration among developers, while also
allowing for further refinement and expansion of the taxonomy.

Index Terms—Program Comprehension, Identifier Names,
Name Similarity, Taxonomy, Code Quality

I. INTRODUCTION

Identifiers, such as variable names, function names, and
class names, play a vital role in source code. It is estimated
that identifiers account for approximately 70% of the total
content in the codebase [1]. Developers typically spend around
55% of their time understanding code [2], and high-quality
identifier names can improve comprehension by up to 19%
[3]. Therefore, it is crucial for names to be both unambiguous
and correctly reflect their intended behavior.

Poor quality identifier names not only hinder code readabil-
ity and degrade overall code quality ([4]) but can also lead to
misinterpretations and increased cognitive load for developers
[5]. Prior research has examined how both the structural and
semantic characteristics of names affect program comprehen-
sion. This includes aspects such as their length, case, grammat-
ical structure, the use of abbreviations, acronyms, and digits,
as well as how names evolve throughout the project’s lifecycle
[6]-[13]. Through these studies, the research community has
produced guidelines, best practices, and anti-patterns related to
identifier naming as well as tools and techniques for identifier
name appraisal and recommendations [1], [14]-[18].

Despite the existing research on identifier naming ([19]—
[22]), there is limited work on understanding how the similar-
ity between identifier names within a project impacts both code
readability and developer productivity. Identifiers having the
same or similar names but differing in purpose can confuse de-
velopers, resulting in potential bugs, increased cognitive load,
and loss of productivity as developers try to decipher the true
intent behind the name. This issue is especially pronounced in
large teams, where developers may unintentionally reference

the wrong identifier due to a similar name, or when onboarding
new developers who are unfamiliar with the codebase [23].

final OutputStreamWriter writer = new
OutputStreamWriter (dataBuffer.

asOutputStream() .charset);

final FastString writer =
(200) ;

new FastStringWriter

Listing 1: Same identifier name used in different contexts.

Consider the code snippet in Listing 1. Within the same
project are multiple instances of an identifier with the same
name (i.e., writer), yet they are used for different purposes
and in different contexts. While both identifiers are related to
writing data, their specific usage and functionality are distinct.
This overlap can lead to misunderstandings, especially among
novice developers who are still acclimating to the codebase.

While code clones ([24]) have been explored extensively in
the field [25]-[27], less attention has been given to naming
similarities among identifiers. Identifiers, such as variable
names, method names, and class names, are often included
in code similarity measurement techniques [27].

However, the specific study of similarities in naming among
identifiers has not been thoroughly examined. Investigating
identifier name similarities can significantly improve the
quality of identifiers by revealing patterns of redundancy,
inconsistency, ambiguity, and overall poor naming quality.
The research will advance the body of knowledge in naming
practices and how developers create and interpret names.

A. Goal & Research Questions

This paper presents an exploratory study aimed at improv-
ing our understanding of naming practices for identifiers by
focusing on similar identifier names within a project. Our goal
is to systematically identify and classify patterns of similarity
in naming. We aim to construct an initial taxonomy that
captures the diverse ways in which names resemble each other
across real-world codebases. We envision that this early-stage
research will serve as a foundation for more comprehensive
studies into the factors influencing the occurrences of such
names and their impact on code comprehension and quality.
Hence, we address the following research questions (RQ):

RQ 1: What types of similarities exist among identifier
names, and how can they be effectively categorized?
Through this RQ, we aim to establish an initial taxonomy
for identifier name similarities. By constructing a well-defined
taxonomy, we can better understand the patterns of these




similarities. Additionally, this classification will provide the
research community with a platform for extending the taxon-
omy and the development of detection and analysis tools to
aid in code quality assessment and refactoring.

RQ 2: How frequently do various categories of identifier
name similarities occur in real-world software projects? To
complement the development of the taxonomy, this RQ aims to
empirically examine the prevalence of each defined category of
the taxonomy. By quantifying how often each category appears
across open-source Java projects, we seek to understand which
patterns are more common in practice. This analysis provides
insights into which types of identifier similarities are most
pervasive, potentially indicating areas of concern.

B. Contributions

This study contributes to the field of identifier naming by:

o Introducing a new taxonomy for classifying similarities in
identifier names.

o Analyzing and quantifying patterns of naming similarity
across open-source Java projects.

II. METHODOLOGY

This section outlines the key activities in our methodology.

A. Project Selection

We used the SEART Data Hub web application [28] to
identify open-source Java projects hosted on GitHub for our
analysis. The tool enabled us to search for projects that met
several criteria: a minimum of 10 stars, at least 500 commits,
a minimum of 10 contributors, an age of at least two years,
not being a fork, and a latest commit date between December
2024 and February 2025. These criteria are based on previous
research ([28], [29]) aimed at selecting popular projects with
a high level of activity and developer involvement, which will
strengthen the insights gained from our analysis.

As this is an exploratory study, we selected five random
projects from the search results returned by the search tool.
Though this sample size is limited, prior research has found
that a saturation of themes can be found within a small number
of cases [30]. The projects we selected to manually analyze are
Dromara Sureness [31], Spring Petclinic [32], Netflix Metacat
[33], Thymeleaf [34], and Apache Nutch [35].

B. Identifier Name Extraction

To facilitate analysis, we compiled an inventory of identi-
fiers for each project. We used JavaParser to parse the (non-
unit test) source files by traversing the Abstract Syntax Tree
to ensure accuracy and consistency in the data collection.
The extracted identifiers include variables, parameters, classes,
enums, and methods, along with their metadata: project name,
file path, identifier name, data type (if applicable), the class
and method in which the identifier was found, and the line
number within its respective file. We identified 1,697 identi-
fiers in Dromara Sureness, 494 in Spring Petclinic, 15,688 in
Metacat, 21,876 in Thymeleaf, and 7,590 in Apache Nutch.

C. Analysis Process

The analysis began with each reviewer independently ex-
amining a specific project. Although identifiers were extracted
using automation, the analysis of their semantic similarity was
performed manually. This approach was necessary as existing
automated techniques are limited in their ability to recognize
semantic and contextual relationships within identifier names
([36], [37]). In this study, the term ‘“semantic meaning” refers
to the real-world concept or abstraction that an identifier
represents. For instance, the semantic meaning of the identifier
“account” refers to a user’s account within an application.

The reviewers analyzed sets of potentially similar identifiers
by inspecting the surrounding code, verifying whether pairs
of identifiers had consistent semantically similar meanings.
For each pair, the reviewers documented identifier names, a
proposed similarity category label, and contextual information
about how each identifier was used within the code. After the
initial review of a project, the projects were assigned to a
second reviewer for an independent evaluation. This process
helped ensure consistency and reduce individual bias.

Once all individual reviews were completed, the team
compared their findings and refined the categories. Through
iterative discussions, the reviewers resolved any discrepancies
until they reached review saturation. At review saturation,
additional reviews no longer provided new insights, and no
significant changes were made to the taxonomy. A final tax-
onomy consisting of seven distinct categories was established.

Using the finalized taxonomy, the team calculated the num-
ber of occurrences for each category for all reviewed projects.
The distribution of these categories was analyzed to identify
trends in identifier usage, allowing a comparative analysis of
how similar identifiers are literally or semantically duplicated
across different projects.

In each project, the number of identifiers analyzed exceeded
the sample size necessary for statistical significance at a 95%
confidence level with a 5% margin of error. This ensures
that our findings are representative of the overall identifier
population in each project. The number of identifiers analyzed
was as follows: Spring Petclinic - 295, Metacat - 837, Sureness
- 1,167, ThymeLeaf - 1,206, and Apache Nutch - 724.

III. RESULTS

RQ 1: What types of similarities exist among identifier
names, and how can they be effectively categorized?

By systematically analyzing five open-source Java projects,
we identified seven distinct categories of identifier name
similarities. Below, we provide a detailed explanation of
each category, including its definition, implications, and code
examples. Additionally, where relevant, some categories are
further divided into subcategories to capture more nuanced
patterns observed during our analysis.

1) Standardized Repetitive Names: ldentifiers that inten-
tionally reuse the same name across different scopes (methods,
classes, files) to represent semantically equivalent entities or
fulfill identical roles. This pattern reflects deliberate standard-
ization and promotes consistency across the codebase. In our



analysis, this pattern most commonly appeared in the form
of standardized parameter names reused across methods for
similar entities, constants and configuration keys consistently
referenced across files, and local variables repeated within
replicated code segments.

In Listing 2, the identifier “viewClass” is used in two
separate documents to support configurable view resolution.
However, reusing the same name for different rendering
models can lead to confusion about the expected behavior.
This ambiguity may result in developers misinterpreting the
rendering context, introducing subtle bugs.

if (classes != null) {
for (File child classes) {
}

}

if (dirs != null) {
for (File child dirs) {

}

private Class<? extends AbstractThymeleafView>
viewClass = ThymeleafView.class;

private Class<? extends ThymeleafReactiveView>
viewClass = ThymeleafReactiveView.class;

Listing 2: Standardized Repetitive Names Example

2) Inconsistent Semantic Names: Different identifiers that
perform the same semantic function or represent the same
type of entity, creating inconsistency in naming conventions.
This inconsistency can diminish code readability and increase
cognitive load for developers. Such inconsistencies may not
always be easily identified through automated tools and often
necessitate manual review to ascertain the shared intent behind
the *identifiers. In Listing 3, the identifiers “db” and “conn” are
utilized interchangeably to denote a database connection, but
the name “db” fails to convey that it specifically represents
a connection. This lack of clarity can obstruct developers’
understanding and disrupt the cohesiveness of the naming
conventions throughout the codebase.

Listing 4: Colliding Names Example

4) Type-Based Variants: These are identifiers that are

either lexically identical or similar, used within the same
context but differing in their data types. These identifiers often
represent the same conceptual entity in various forms and are
utilized for transformations, parsing, or layered abstraction.
While they may appear functionally similar, differences in
data types can lead to confusion and increase the risk of
misunderstandings during code maintenance.
Polymorphic Names: This occurs when one identifier has a
data type that is a subclass of another. This naming style
can create ambiguity, especially if the names are similar
or the type distinctions are unclear. For example, Listing
5 has two parameters named “request”: one for the type
“HttpServletRequest” and its parent, “ServletRequest”.

public static synchronized boolean
shrinkConnectionPoolSize () {

DBConnection conn = null;

}

private static synchronized int
getFreeDBConnectionNumber () {

DBConnection db = null;

private static void addUserToSession (final
HttpServletRequest request) {

}

private void doFilter (final ServletRequest
request, final ServletResponse response,
final FilterChain chain) throws
IOException, ServletException {

Listing 3: Inconsistent Semantic Names Example

3) Colliding Names: ldentifiers sharing lexically identical
or similar names while representing completely different con-
cepts or serving unrelated purposes. Although such identifiers
may be lexically identical or closely related, their divergent
semantic roles can introduce ambiguity and cause confusion.
This pattern was often observed in cases when developers
favor brevity or reuse familiar terms across unrelated parts
of the codebase. In Listing 4, a loop variable “child” appears
in different contexts with unrelated semantic meanings, com-
plicating developers’ understanding from the names alone.

Listing 5: Polymorphic Names Example

Cardinality Names: ldentifiers that share similar names can
sometimes lead to confusion when they differ in their cardi-
nality, i.e., representing either a single value or a collection of
values. In Listing 6, the variable “agentName”, which holds
a single string, and “agentNames”, which contains a set of
strings. A developer might misread the variable “agentNames”
as “agentName” and overlook the critical difference indicated
by the additional character ‘s’.

String agentName = conf.get ("http.agent.name")

’

agentNames =

new LinkedHashSet<>();
if (!agentName.equals("*")) {
agentNames.add (agentName.toLowerCase()) ;

}

Listing 6: Cardinality Names Example




5) Derivational Variants: These refer to identifiers that
are deliberately named to reflect their derivation from a base
or root identifier, particularly when behaviors change. These
identifiers often appear in the same class or method. This
pattern helps distinguish different stages of data transforma-
tion, temporary storage, or type specificity while maintaining a
coherent naming relationship with the original identifier. How-
ever, overusing distinguishing names can increase cognitive
load for developers, who must keep track of multiple variations
of a concept. Additionally, as code evolves, names that were
once clear can become ambiguous. In such cases, developers
may need to refactor the code to rename identifiers, such as
when a name includes a type that changes over time.
Transformation Names: 1dentifiers that undergo transforma-
tions, such as parsing, trimming, filtering, or formatting.
Typically, the naming convention for these identifiers includes
a prefix or suffix that indicates the nature of the transformation.
For example, in Listing 7, the variable “input” is transformed
into “scannedInput”, a lowercase version of the original string.

6) Numerically Distinguished Variants: These refer to

identifiers that include numbers to differentiate between dis-
tinct instances or roles of the same underlying concept. This
technique helps prevent naming conflicts but may also indicate
opportunities for better abstraction through the use of collec-
tions or arrays.
Sequential Numeric Names: Identifiers that append numeric-
suffixes to differentiate multiple objects of the same type. For
example, in Listing 10, when managing multiple “Customer”
instances, the developer names each instance as “custl”,
“cust2”, and “cust3”, each representing a unique customer.

final Customer custl = new Customer ();

final Customer cust2 = new Customer ();

final Customer cust3 = new Customer ();

final String input =
getInput () ;

state.get (nodeIndex) .

String scannedInput = input.toLowerCase();

Listing 7: Transformation Names Example

Type-Descriptive Names: Identifiers that are named similarly
to their base names but include additional information about
their data types. In this context, the descriptive identifier
provides a more specific version of the base name. In Listing
8, both “target” and “targetObject” are of type “Object”, with
“targetObject” explicitly indicating its data type.

Listing 10: Sequential Numeric Names Example

Value-Encoded Names: 1dentifiers that encode specific values
directly in their name, often for clarity or to enforce specific
mappings. In Listing 11, the identifiers “COUNT_2*“ and
“COUNT_3* directly indicate their associated value. This
is not inherently sequential, as the absence of “COUNT_1*
indicate that the numbers were chosen for their semantic value.

private static final int COUNT_2 = 2;

private static final int COUNT_3 = 3;

public boolean canRead (final EvaluationContext
context, final Object target, final
String name) throws AccessException ({

}

public boolean canRead (final EvaluationContext
context, final Object targetObject, final
String name) throws AccessException {

Listing 11: Value-Encoded Names Example

7) Concise Variants: These are identifiers that utilize short-
ened or compact naming forms to convey their meaning. These
names often prioritize brevity over descriptiveness.
Abbreviated Names: These are identifiers that represent short-
ened forms of longer, more descriptive terms. It is important
to use abbreviated names cautiously to maintain readability,
especially in larger or long-lived codebases. In Listing 12,
the variables “logger” and “log” both record messages in
the console, but their similar naming may cause confusion
regarding any functional differences between them.

Listing 8: Type-Descriptive Names Example

Temporary Names: ldentifiers for short-lived variables that
store temporary values. These variables are typically created
to assist with validation, transformation, or processing of
data, and are often discarded after their immediate use within
a local scope. In Listing 9, the variable “rolesTmp” is a
temporary variable that stores HTTP session attributes before
being assigned to “roles”.

public static final Logger log = LoggerFactory
.getLogger (HandlerManager.class) ;

public static final Logger logger =
LoggerFactory.getLogger (HandlerManager.
class);

Object rolesTmp = httpSession.getAttribute (
SurenessConstant .ROLES) ;
List<String> roles = rolesTmp =
(List<String>) rolesTmp;

null ? null

Listing 9: Temporary Names Example

Listing 12: Abbreviated Names Example

Acronym Names: These are identifiers formed by the initial
letters of compound terms or multi-word phrases, typically
written in uppercase or camel case. In Listing 13,the variable
named “sb” is an acronym for StringBuilder.




private String calcDigest (String first,
args) {
StringBuilder stringBuilder =
StringBuilder (first);

String

new

}
private static String bytesToHexString (bytel]
bytes) {

StringBuilder sb = new StringBuilder();

Listing 13: Acronym Names

Single-Character Names: Single-character identifiers are of-
ten used in tightly scoped contexts, such as mathematical
operations, iterations, or lambda functions. However, in some
cases, these short names are applied to more complex objects,
leading to potential readability issues. In Listing 14, a byte
array is declared with the name “b”, while a StringBuffer
variable is also named “b”. In this scenario, the use of brief
name makes it less clear what each variable represents.

byte[] b = new byte[1024];

StringBuffer b = new StringBuffer();

Listing 14: Single-Character Names Example

RQ 2: How frequently do various categories of identifier
name similarities occur in real-world software projects?

Identifier name variant counts and the three most common
variant categories for each project are shown in Table I.

Spring Petclinic was found to have the highest percentage
of identifiers that were classified as variants with 267 (90.5%)
variants found while Apache Nutch had the lowest percentage
of identifiers variants with 93 (12.85%) instances. A higher
percentage of identifier variance points to a more uniform,
possibly template-driven naming structure across the codebase.

Standardized Repetitive Names is among the top three
most common categories across all projects, suggesting that
most codebases deliberately attempt to maintain naming con-
sistency. Spring Petclinic’s high variant percentage suggests
that Spring Petclinic has a smaller, more homogenous project
structure or relies more on boilerplate code. This contrasts
with Dromara Sureness and Apache Nutch, where their lower
percentage of identifier name similarities may indicate diverse
functionality in the project or domain-specificity.

Projects with high variant percentages can have improved
readability and easier onboarding due to its uniformity. How-
ever, they may have less functional diversity with smaller-
scope projects. In contrast, projects with low variant percent-
ages may have a broader functional scope, but may be harder
to consistently enforce, leading to reduced clarity in the code.
Identifier variants can reflect the functional complexity and
scale of a codebase, guiding decisions on refactoring or the
onboarding strategy.

IV. DISCUSSION

Our exploratory study examined patterns of identifier name
similarities across five widely used Java projects and in-
troduced a taxonomy comprising seven categories, some of
which have further subcategories. Our analysis revealed that
many identifier similarities were driven by variations in data
types and by differences in how identifiers were used within
their respective contexts. Aspects of an identifier’s semantic
features, such as its role, data structure, and scope, were
critical in understanding the intent and function of the naming
choices. Identifier pairs declared close to one another were
more likely to be semantically related, even when named
differently. This suggests that automated detection tools must
consider contextual information beyond simple string match-
ing to provide meaningful similarity assessments.

During manual inspection, a considerable number of ab-
breviated or shorthand identifiers were encountered, partic-
ularly within utility classes or method-scoped logic. This
suggests that developers often prioritize brevity over clarity
when naming identifiers, especially in localized scopes [3].
Although these abbreviations, such as “u” for url or “c” for
Comparator or Character, are syntactically concise, they often
obscure the underlying intent, especially when reused across
files or contexts. This made semantic tracing more difficult,
highlighting a potential readability and maintainability risk in
using excessively concise names.

Another unexpected finding was the discovery of inconsis-
tently named identifiers that serve the same purpose, even in
well-established and widely used open-source projects. For
example, in Dromara Sureness, “clazz* and “clz* are both used
as an iterator variable to loop through different object types.
Similarly, in Thymeleaf, the identifiers “target” and “element*
were both used to refer to an iterable target object, and were
named differently despite having no structural differences.

The patterns identified in this study have clear implications
for software maintainability. However, an important finding is
that not all identifier similarities represent problems. Certain
categories, such as Colliding Names, Inconsistent Semantic
Names, and Concise Variants, pose a greater risk to readability,
especially in large codebases. These patterns increase the
cognitive load on developers, who need to understand the
naming ambiguities without explicit documentation or naming
conventions. Moreover, when identifiers are semantically dif-
ferent but share the same or similar names, they can introduce
bugs or reduce the effectiveness of automatic refactoring and
static analysis tools. Conversely, patterns such as Derivational
Variants and Type-Based Variants are often named intention-
ally similar to provide clarity, especially when used to indicate
stages of data transformation or temporary roles.

Implications for Researchers: Our taxonomy provides a plat-
form for investigating identifier naming practices, specifically
similar names in the codebase. This work opens up several
research opportunities, including large-scale empirical studies
on more diverse and representative projects to examine the
occurrence of similarity categories, the cognitive impact of



TABLE I: Identifier Similarities Count.

2nd Category

3rd Category

Project Identifier Simi- Top Category
larities Count

Spring Petclinic 267 (90.5%) Standardized Repetitive Names
(56.18%)

Metacat 517 (61.77%) Concise Variants - Abbreviated
(70.41%)

Dromara 129 (11.05%) Standardized Repetitive names

Sureness (40.31%)

Thymeleaf 291 (24.13%) Standardized Repetitive Names
(79.38%)

Apache Nutch 93 (12.85%) Concise ~ Variants - Single-

Character (47.31%)

different similarity types, investigations into how such names
relate to code quality metrics, and refining existing code
readability models to account for similar identifier names.
Moreover, the taxonomy can serve as a foundation for devel-
oping naming guidelines and refactoring recommendations.

Implications for Developers: Our findings suggest that teams
should establish explicit naming conventions that account for
the different types of similarities we identified. By formalizing
these naming conventions, development teams can enhance
code readability and reduce cognitive load when navigating
large codebases. These insights can improve code reviews,
automated tools, and onboarding documentation, leading to
improvements in software quality and team productivity.

Implications for Tool/IDE Vendors: Using our findings,
tool and IDE vendors can develop automated tools that can
identify and classify different types of naming similarities.
Furthermore, integrating such tools into IDEs can provide
developers with real-time feedback on their naming choices
or into code review systems to flag potentially problematic
names. Advanced features could include suggesting alternative
identifier names tailored to the surrounding code context or
visualizing naming similarity clusters across a project.

Implications for Software Engineering Education: Tradi-
tional programming education often focuses on basic naming
conventions, yet challenges of naming similarities in larger
codebases are not typically addressed. The taxonomy can help
students recognize and avoid problematic naming patterns.
Incorporating these concepts into programming courses can
provide future developers with strategies for writing more
readable and maintainable code in complex environments.

V. THREATS TO VALIDITY

The findings from this study are limited to our analysis
of only five open-source Java projects, which threatens the
generalizability of our findings. However, as an exploratory
study, the findings serve as a starting point for further research
in this area. In addition, the projects that were chosen were
larger codebases that had many developers contributing to
them. Future studies could expand the sample size to include
a broader range of projects across different sizes, domains,
paradigms, and programming languages.

Concise Variants - Abbreviated
(16.86%)

Derivational ~ Variants -
Descriptive Names (13.73%)

Type-

Type-Based Variants - Cardinality
Names (13.18%)

Name Collisions (7.22%)

Numerically Distinguished Vari-
ants (27.96%)

Colliding Names (16.10%)

Standardized Repetitive Names

(7.93%)

Numerically Distinguished Vari-
ants (10.08%)

Type-Based Variants - Cardinality
Names (3.43%)

Standardized Repetitive Names

(18.28%)

Additionally, our manual analysis of the code may introduce
subjectivity, as the reviewers need to interpret the code’s
context and the developer’s intent when classifying similar
identifiers. This subjectivity could impact the reliability of our
results due to potential inconsistencies in categorization. To
mitigate this threat, we employed multiple reviewers for each
project, with reviewers cross-validating results by swapping
projects and resolving any disagreements through discussion.

Finally, our taxonomy has not been validated by practition-
ers, which threatens its validity. Without input from practi-
tioners, there is a risk that the categories may not accurately
reflect real-world practices or challenges that developers face.

Despite these limitations, this exploratory study offers valu-
able insights and establishes a foundation for future research.
Moreover, the taxonomy should be viewed as a starting point
that requires further refinement and validation across different
domains, programming languages, and development contexts.

VI. CONCLUSION & FUTURE WORK

Motivated by the important role that identifiers play in
program comprehension and maintainability, this study ex-
plores the prevalence and categorization of similar identifier
names in a sample of open-source Java projects. We have
identified a diverse range of naming patterns and developed a
novel taxonomy that includes multiple categories and several
subcategories. Our work advances the existing knowledge in
the field of identifier naming and serves as a foundational
step towards a better understanding of the presence of similar
identifier names within a project’s codebase.

Our future work will refine this taxonomy by incorporating
additional projects across different programming languages.
This will allow us to create a more effective and generalizable
taxonomy, as well as identify any language-specific or domain-
specific naming trends. Additionally, we plan to engage with
practitioners to validate our taxonomy and gain insights into
the practical implications of similar identifier names, such as
their effects on code readability and maintenance efforts.

Artifacts related to this study are available at [38].

REFERENCES

[1] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, pp. 261-282, 2006. 1



[2]

[4

[l

[5]

[6]

[7

—

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951—
976, 2017. 1

J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend,” Empirical Software Engineering, vol. 24,
pp. 417443, 2019. 1, 5

S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in 2009 16th
Working Conference on Reverse Engineering, pp. 31-35, IEEE, 2009. 1
S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension, ICSE
’18, ACM, May 2018. 1

D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in /4th IEEE International Conference on Program
Comprehension (ICPC’06), pp. 3—-12, 2006. 1

A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in Proceedings of the 26th Conference on Program
Comprehension, ICPC *18, (New York, NY, USA), p. 31-40, Association
for Computing Machinery, 2018. 1

S. Butler, M. Wermelinger, and Y. Yu, “A survey of the forms of
java reference names,” in 2015 IEEE 23rd International Conference on
Program Comprehension, pp. 196-206, 2015. 1

A. Peruma and C. D. Newman, “Understanding digits in identifier
names: An exploratory study,” in Proceedings of the 1st International
Workshop on Natural Language-Based Software Engineering, pp. 9-16,
2022. 1

D. W. Binkley, M. Davis, D. J. Lawrie, J. I. Maletic, C. Morrell, and
B. Sharif, “The impact of identifier style on effort and comprehension,”
Empir. Softw. Eng., vol. 18, no. 2, pp. 219-276, 2013. 1

C. D. Newman, R. S. AlSuhaibani, M. J. Decker, A. Peruma, D. Kaushik,
M. W. Mkaouer, and E. Hill, “On the generation, structure, and semantics
of grammar patterns in source code identifiers,” Journal of Systems and
Software, vol. 170, p. 110740, 2020. 1

C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An empirical study of abbreviations and expansions in
software artifacts,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 269-279, 2019. 1

A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman,
“Contextualizing rename decisions using refactorings, commit messages,
and data types,” Journal of Systems and Software, vol. 169, p. 110704,
2020. 1

C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma, M. W.
Mkaouer, S. Mohapatra, T. Vishnoi, M. Zampieri, T. J. Sheldon, and
E. Hill, “An ensemble approach for annotating source code identifiers
with part-of-speech tags,” IEEE Transactions on Software Engineering,
vol. 48, no. 9, pp. 3506-3522, 2022. 1

G. Li, H. Liu, and A. S. Nyamawe, “A survey on renamings of software
entities,” ACM Comput. Surv., vol. 53, Apr. 2020. 1

R. S. Alsuhaibani, C. D. Newman, M. J. Decker, M. L. Collard, and
J. 1. Maletic, “An approach to automatically assess method names,”
in Proceedings of the 30th IEEE/ACM International Conference on
Program Comprehension, ICPC °22, p. 202-213, ACM, May 2022. 1
A. Peruma, V. Arnaoudova, and C. D. Newman, “Ideal: An open-source
identifier name appraisal tool,” in 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), p. 599-603, IEEE,
Sept. 2021. 1

C. D. Newman, B. Scholten, S. Testa, J. A. C. Behler, S. Banabilah,
M. L. Collard, M. J. Decker, M. W. Mkaouer, M. Zampieri, E. A.
Alomar, R. S. AlSuhaibani, A. Peruma, and J. I. Maletic, “Scalar: A part-
of-speech tagger for identifiers,” in 2025 IEEE/ACM 33rd International
Conference on Program Comprehension (ICPC), ICPC °25, (New York,
NY, USA), Association for Computing Machinery, 2025. 1

I. Herka, “Identifier names in computer programs: Literature review.,”
Advances in Cognitive Psychology, vol. 19, no. 3, 2023. 1

N. Al Madi and M. Zang, “Would a rose by any other name smell as
sweet? examining the cost of similarity in identifier naming.,” in PPIG,
pp. 91-106, 2022. 1

C. D. Newman, R. S. Alsuhaibani, M. L. Collard, and J. I. Maletic,
“Lexical categories for source code identifiers,” in 2017 IEEE 24th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 228-239, IEEE, 2017. 1

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]
[33]
[34]
(35]
[36]

(37]

(38]

R. Gresta and E. Cirilo, “Contextual similarity among identifier
names: An empirical study,” in Workshop de Visualizagcdo, Evolugcdo
e Manutengdo de Software (VEM), pp. 49-56, SBC, 2020. 1

V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them,” Empirical Software
Engineering, vol. 21, no. 1, pp. 104-158, 2016. 1

1. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272), ICSM-98,
p.- 368-377, IEEE Comput. Soc. 1

G. Shobha, A. Rana, V. Kansal, and S. Tanwar, Code Clone Detec-
tion—A Systematic Review, p. 645-655. Springer Nature Singapore,
2021. 1

M. Kaur and D. Rattan, “A systematic literature review on the use of
machine learning in code clone research,” Computer Science Review,
vol. 47, p. 100528, Feb. 2023. 1

M. Zakeri-Nasrabadi, S. Parsa, M. Ramezani, C. Roy, and
M. Ekhtiarzadeh, “A systematic literature review on source code
similarity measurement and clone detection: Techniques, applications,
and challenges,” Journal of Systems and Software, vol. 204, p. 111796,
Oct. 2023. 1

O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021, pp. 560-564, 1EEE, 2021. 2

A. Eliseeva, Y. Sokolov, E. Bogomolov, Y. Golubev, D. Dig, and
T. Bryksin, “From commit message generation to history-aware commit
message completion,” in Proceedings of the 38th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 23,
p. 723-735, IEEE Press, 2024. 2

M. M. Hennink, B. N. Kaiser, and V. C. Marconi, “Code saturation ver-
sus meaning saturation: how many interviews are enough?,” Qualitative
health research, vol. 27, no. 4, pp. 591-608, 2017. 2

“Dromara Sureness.” url = https://github.com/dromara/sureness. 2
“Spring PetClinic.” url = https://github.com/dromara/sureness. 2
“Netflix Metacat.” url = https://github.com/Netflix/metacat. 2
“Thymeleaf.” url = https://github.com/thymeleaf/thymeleaf. 2

“Apache Nutch.” url = https://github.com/apache/nutch. 2

Y. Wainakh, M. Rauf, and M. Pradel, “Idbench: Evaluating semantic rep-
resentations of identifier names in source code,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp. 562-573,
IEEE, 2021. 2

N. Al Madi, “Namesake: A checker of lexical similarity in identifier
names,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering, pp. 1-5, 2022. 2

“Artifact package.” url = https://doi.org/10.6084/m9.figshare.29127113.
6



	Introduction
	Goal & Research Questions
	Contributions

	Methodology
	Project Selection
	Identifier Name Extraction
	Analysis Process

	Results
	Standardized Repetitive Names
	Inconsistent Semantic Names
	Colliding Names
	Type-Based Variants
	Derivational Variants
	Numerically Distinguished Variants
	Concise Variants


	Discussion
	Threats To Validity
	Conclusion & Future Work
	References

